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Context: Why lattice supersymmetry
Lattice discretization provides non-perturbative,

gauge-invariant regularization of vectorlike gauge theories

We’ve discussed many ways lattice studies
can improve our knowledge of strongly coupled field theories

We can imagine many potential susy applications, including
Compute Wilson loops, spectrum, scaling dimensions, etc.,

complementing perturbation theory, holography, bootstrap, . . .

Further direct checks of conjectured dualities

Predict low-energy constants from dynamical susy breaking

Validate or refine AdS/CFT-based modelling
(e.g., QCD phase diagram, condensed matter systems)
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Context: Why lattice supersymmetry
Lattice discretization provides non-perturbative,

gauge-invariant regularization of vectorlike gauge theories

We’ve discussed many ways lattice studies
can improve our knowledge of strongly coupled field theories

We can imagine many potential susy applications, including
Compute Wilson loops, spectrum, scaling dimensions, etc.,

complementing perturbation theory, holography, bootstrap, . . .

Further direct checks of conjectured dualities

Predict low-energy constants from dynamical susy breaking

Validate or refine AdS/CFT-based modelling
(e.g., QCD phase diagram, condensed matter systems)

Many ideas probably infeasible; relatively few have been explored
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Context: Why not lattice supersymmetry

There is a problem with supersymmetry in discrete space-time
Recall supersymmetry extends Poincaré symmetry

by spinorial generators QI
α and Q

I
α̇ with I = 1, · · · ,N

The resulting algebra includes
{

Qα,Qα̇

}
= 2σµ

αα̇Pµ

Pµ generates infinitesimal translations, which don’t exist on the lattice
=⇒ supersymmetry explicitly broken at classical level

Explicitly broken supersymmetry =⇒ relevant susy-violating operators
(typically many)

Fine-tuning their couplings to restore supersymmetry
is generally not practical in numerical lattice calculations
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Special cases in four dimensions
Minimal (N = 1) supersymmetric Yang–Mills
SU(N) gauge theory with massless gaugino in adjoint rep.

No scalar fields
=⇒ gaugino mass is only relevant susy-violating operator
=⇒ chiral lattice fermions (overlap / domain wall) protect susy

Scalar fields (from matter multiplets or non-minimal susy)
introduce many more relevant susy-violating operators

In this case (some subset of) the susy algebra must be preserved
to permit practical lattice calculations

Maximal (N = 4) supersymmetric Yang–Mills (SYM)
The only known 4d system with a supersymmetric lattice formulation

Remainder of talk will focus on recent progress with lattice N = 4 SYM
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Exact susy on the lattice: N = 4 SYM

N = 4 SYM is a particularly interesting theory
—Context for development of AdS/CFT correspondence

—Testing ground for reformulations of scattering amplitudes

—Arguably simplest non-trivial field theory in four dimensions

Basic features:
SU(N) gauge theory with four fermions ΨI and six scalars ΦIJ,

all massless and in adjoint rep.

Action consists of kinetic, Yukawa and four-scalar terms
with coefficients related by symmetries

Supersymmetric: 16 supercharges QI
α and Q

I
α̇ with I = 1, · · · ,4

Fields and Q’s transform under global SU(4) ' SO(6) R symmetry

Conformal: β function is zero for any ’t Hooft coupling λ
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Exact susy on the lattice: topological twisting

What is special about N = 4 SYM

The 16 fermionic supercharges QI
α and Q

I
α̇ fill a Kähler–Dirac multiplet:

Q1
α Q2

α Q3
α Q4

α

Q
1
α̇ Q

2
α̇ Q

3
α̇ Q

4
α̇

= Q+ γµQµ + γµγνQµν + γµγ5Qµνρ + γ5Qµνρσ

−→ Q+ γaQa + γaγbQab
with a,b = 1, · · · ,5

This is a decomposition in representations of a “twisted rotation group”

SO(4)tw ≡ diag
[
SO(4)euc ⊗ SO(4)R

]
SO(4)R ⊂ SO(6)R

This change of variables gives a susy subalgebra {Q,Q} = 2Q2 = 0
This subalgebra can be exactly preserved on the lattice

David Schaich (Syracuse) Lattice Supersymmetry Lattice for BSM, April 2015 6 / 23



Twisted N = 4 SYM

Everything transforms with integer spin under SO(4)tw — no spinors

QI
α and Q

I
α̇ −→ Q, Qa and Qab

ΨI and Ψ
I −→ η, ψa and χab

Aµ and ΦIJ −→ Aa = (Aµ, φ) + i(Bµ, φ) and Aa

The twisted-scalar supersymmetry Q acts as

Q Aa = ψa Q ψa = 0

Q χab = −Fab Q Aa = 0
Q η = d Q d = 0

↖ bosonic auxiliary field with e.o.m. d = DaAa

1 Q directly interchanges bosonic←→ fermionic d.o.f.

2 The susy subalgebra Q2 · = 0 is manifest
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Lattice N = 4 SYM
The lattice theory is very nearly a direct transcription

Covariant derivatives −→ finite difference operators
Gauge fields Aa −→ gauge links Ua

Q Aa −→Q Ua = ψa Q ψa = 0

Q χab = −Fab Q Aa −→Q Ua = 0
Q η = d Q d = 0

Naive lattice action retains same form as continuum action
and remains supersymmetric, QS = 0

Geometrical formulation facilitates discretization
η live on lattice sites ψa live on links
χab connect opposite corners of oriented plaquettes

Orbifolding / dimensional deconstruction produces same lattice system
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Five links in four dimensions −→ A∗4 lattice

—Can picture A∗4 lattice
as 4d analog of 2d triangular lattice

—Preserves S5 point group symmetry

—Basis vectors are non-orthogonal
and linearly dependent

S5 irreps precisely match onto irreps of twisted SO(4)tw

5 = 4⊕ 1 : Ua −→ Aµ + iBµ, φ+ iφ
ψa −→ ψµ, η

10 = 6⊕ 4 : χab −→ χµν , ψµ
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Twisted N = 4 SYM on the A∗4 lattice
—We have exact gauge invariance

—We exactly preserve Q, one of 16 supersymmetries

—The S5 point group symmetry
provides twisted R & Lorentz symmetry in the continuum limit

The high degree of symmetry has important consequences
Moduli space preserved to all orders of lattice perturbation theory

−→ no scalar potential induced by radiative corrections

β function vanishes at one loop in lattice perturbation theory

Real-space RG blocking transformations preserve Q and S5

Only one marginal tuning to recover Qa and Qab in the continuum

The theory is almost suitable for practical numerical calculations. . .
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Numerical complications
1 Complex gauge field =⇒ U(N) = SU(N) ⊗ U(1) gauge invariance

U(1) sector decouples only in continuum limit

2 Q Ua = ψa =⇒ gauge links must be elements of algebra
Resulting flat directions required by supersymmetric construction

but must be lifted to ensure Ua = IN +Aa in continuum limit

We need to add two deformations to regulate flat directions

SU(N) scalar potential ∝ µ2 ∑
a
(
Tr

[
UaUa

]
− N

)2

U(1) plaquette determinant ∼ G
∑

a 6=b (detPab − 1)

Scalar potential softly breaks Q supersymmetry
↖susy-violating operators vanish as µ2 → 0

Plaquette determinant can be made Q-invariant (new development)
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New development (arXiv:1504.0_ _ _ _ )

Scalar potential softly breaks Q supersymmetry

Plaquette determinant can be made Q-invariant

Basic idea: Modify the equations of motion −→ moduli space

d(n) = D(−)
a Ua(n) −→ D(−)

a Ua(n) + G
∑
a 6=b

[detPab(n)− 1]

Produces much smaller violations of QWard identity 〈sB〉 = 9N2/2
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Aside: Public code for lattice N = 4 SYM

The lattice action is obviously very complicated

(For experts: &100 inter-node data transfers in the fermion operator)

To reduce barriers to entry our parallel code is publicly developed at
github.com/daschaich/susy

Evolved from MILC lattice QCD code, presented in arXiv:1410.6971
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Physics result: Static potential is Coulombic at all λ

Static potential V (r) from r × T Wilson loops: W (r ,T ) ∝ e−V (r) T

Fit V (r) to Coulombic
or confining form

V (r) = A− C/r

V (r) = A− C/r + σr

C is Coulomb coefficient
σ is string tension

Fits to confining form always produce vanishing string tension σ = 0

To be revisited with the improved action
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Coupling dependence of Coulomb coefficient

Perturbation theory predicts C(λ) = λ/(4π) +O(λ2)

AdS/CFT predicts C(λ) ∝
√
λ for N →∞, λ→∞, λ� N

Left: Agreement with perturbation theory for N = 2, λ . 2

Right: Tantalizing
√
λ-like discrepancy for N = 3, λ & 1

No visible dependence on (unimproved) soft Q breaking
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Recapitulation
Lattice supersymmetry is both enticing and challenging

N = 4 SYM is practical to study on the lattice
thanks to exact preservation of susy subalgebra Q2 = 0

The theory is simple; the lattice action is complicated
−→ Public code to reduce barriers to entry

The static potential is always Coulombic
For N = 2 C(λ) is consistent with perturbation theory
For N = 3 we may be seeing behavior predicted by AdS/CFT

Many more directions are being — or can be — pursued
I N = 4 anomalous dimensions, e.g. for Konishi operator
I Understanding the (absence of a) sign problem
I Systems with less supersymmetry, in lower dimensions,

including matter fields, exhibiting spontaneous susy breaking, . . .
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Thank you!
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Thank you!

Collaborators
Simon Catterall, Poul Damgaard, Tom DeGrand and Joel Giedt

Funding and computing resources
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Supplement: Konishi operator scaling dimension

N = 4 SYM is conformal at any λ

All correlation functions decay algebraically ∝ r−∆

The Konishi operator is the simplest conformal primary operator

OK =
∑

I

Tr
[
ΦIΦI] CK (r) ≡ OK (x + r)OK (x) = Ar−2∆K

There are many predictions for the scaling dim. ∆K (λ) = 2 + γK (λ)

From weak-coupling perturbation theory,
related to strong coupling by 4πN

λ ←→ λ
4πN S duality

From holography for N →∞ and λ→∞ but λ� N

Upper bounds from the conformal bootstrap program

We will add lattice gauge theory to this list
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Konishi operator on the lattice

OK =
∑

I

Tr
[
ΦIΦI] −→ ÔK =

∑
a, b

Tr
[
ϕ̂aϕ̂b

]
with ϕ̂a = UaUa −

1
N

Tr
[
UaUa

]
IN

ĈK (r) = ÔK (x + r)ÔK (x) ∝ r−2∆K

Need improved action
for reasonable ĈK (r) on 84 lattice

Improved results consistent with
power law using perturbative ∆K

Fitting ĈK (r) is not a stable way to find ∆K — we have better tools
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Preliminary Konishi ∆K from Monte Carlo RG
Eigenvalues of MCRG stability matrix −→ scaling dimensions

Simple trial (1×1 stability “matrix”)
correctly finds ∆K → 2 as λ→ 0

Only statistical errors so far

Will check with independent
finite-size scaling analysis

Many systematics to investigate

? Larger volumes ? More RG blocking steps

? More operators in stability matrix ? RG optimization

? (µ,G) dependence ? λlat renormalization
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Supplement: The (absence of a) sign problem

In lattice gauge theory we compute operator expectation values

〈O〉 =
1
Z

∫
[dU ][dU ]O e−SB [U ,U ] pfD[U ,U ]

pfD = |pfD|eiα can be complex for lattice N = 4 SYM
−→ Complicates interpretation of

[
e−SB pfD

]
as Boltzmann weight

Have to reweight “phase-quenched” (pq) calculations

〈O〉pq =
1
Zpq

∫
[dU ][dU ]O e−SB [U ,U ] |pfD| 〈O〉 =

〈
Oeiα〉

pq〈
eiα

〉
pq

Sign problem: This breaks down if
〈
eiα〉

pq is consistent with zero
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Illustration of sign problem and its absence
With periodic temporal fermion boundary conditions

we have an obvious sign problem,
〈
eiα〉

pq consistent with zero

With anti-periodic BCs and all else the same
〈
eiα〉

pq ≈ 1
−→ phase reweighting not even necessary

Even stranger
Other 〈O〉pq nearly identical

despite sign problem...

Can this be understood?
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Pfaffian phase dependence on volume and N

No indication of a sign problem with anti-periodic BCs

1− 〈cos(α)〉 � 1 means pfD = |pfD|eiα nearly real and positive
Fluctuations in pfaffian phase don’t grow with the lattice volume
Insensitive to number of colors N = 2, 3, 4
To be revisited with the improved action

Hard calculations
Each 43×6 measurement

required ∼8 days,
∼10GB memory

Parallel O(n3) algorithm
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Backup: Failure of Leibnitz rule in discrete space-time

Given that
{

Qα,Qα̇

}
= 2σµ

αα̇Pµ = 2iσµ
αα̇∂µ is problematic,

why not try
{

Qα,Qα̇

}
= 2iσµ

αα̇∇µ for a discrete translation?

Here ∇µφ(x) = 1
a [φ(x + aµ̂)− φ(x)] = ∂µφ(x) + a

2∂
2
µφ(x) +O(a2)

Essential difference between ∂µ and ∇µ on the lattice, a > 0

∇µ [φ(x)χ(x)] = a−1 [φ(x + aµ̂)χ(x + aµ̂)− φ(x)χ(x)]

= [∇µφ(x)]χ(x) + φ(x)∇µχ(x) + a [∇µφ(x)]∇µχ(x)

We only recover the Leibnitz rule ∂µ(fg) = (∂µf )g + f∂µg when a→ 0
=⇒ “Discrete supersymmetry” breaks down on the lattice

(Dondi & Nicolai, “Lattice Supersymmetry”, 1977)

David Schaich (Syracuse) Lattice Supersymmetry Lattice for BSM, April 2015 23 / 23

http://inspirehep.net/record/4172


Backup: Twisting←→ Kähler–Dirac fermions

The Kähler–Dirac representation is related to the usual QI
α,Q

I
α̇ by

Q1
α Q2

α Q3
α Q4

α

Q
1
α̇ Q

2
α̇ Q

3
α̇ Q

4
α̇

= Q+ γµQµ + γµγνQµν + γµγ5Qµνρ + γ5Qµνρσ

−→ Q+ γaQa + γaγbQab
with a,b = 1, · · · ,5

The 4× 4 matrix involves R symmetry transformations along each row
and (euclidean) Lorentz transformations along each column

=⇒ Kähler–Dirac components transform under “twisted rotation group”

SO(4)tw ≡ diag
[
SO(4)euc ⊗ SO(4)R

]
↑

only SO(4)R ⊂ SO(6)R
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Backup: A∗4 lattice with five links in four dimensions

Aa = (Aµ, φ) may remind you of dimensional reduction

On the lattice we want to treat all five Ua symmetrically
to obtain S5 −→ SO(4)tw symmetry

—Start with hypercubic lattice
in 5d momentum space

—Symmetric constraint
∑

a ∂a = 0
projects to 4d momentum space

—Result is A4 lattice
−→ dual A∗4 lattice in real space
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Backup: Hypercubic representation of A∗4 lattice

It is very convenient to represent the A∗4 lattice
as a hypercube with a backwards diagonal
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Backup: Twisted N = 4 SYM action
Twisting gives manifestly supersymmetric action for N = 4 SYM

S =
N

2λlat
Q

(
χabFab + ηDaAa −

1
2
ηd

)
− N

8λlat
εabcde χabDcχde

QS = 0 follows from Q2 · = 0 and Bianchi identity

The lattice theory is very nearly a direct transcription
Covariant derivatives −→ finite difference operators
Gauge fields Aa −→ gauge links Ua

Lattice action retains same QS = 0 form as above

The unimproved action directly adds

Ssoft =
N

2λlat
µ2

(
1
N

Tr
[
UaUa

]
− 1

)2

+ κ |detPab − 1|2

Both terms in Ssoft softly break the Q supersymmetry
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Backup: Unimproved soft susy breaking

Directly adding scalar potential and plaquette determinant to action
explicitly breaks supersymmetry — detPab causes dominant effect

Left: The breaking is soft — guaranteed to vanish as µ, κ −→ 0

Right: Soft Q breaking also suppressed ∝ 1/N2
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Backup: Code performance—weak and strong scaling

Left: Strong scaling for U(2) and U(3) 163×32 RHMC

Right: Weak scaling for O(N3
Ψ) pfaffian calculation (fixed local volume)

NΨ ≡ 16N2L3NT is number of fermion degrees of freedom

To be revisited with the improved action

Both plots on log–log axes with power-law fits
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Backup: Numerical costs for 2, 3 and 4 colors

Red: Find RHMC cost scaling ∼N5 (recall adjoint fermion d.o.f. ∝N2)

Blue: Pfaffian cost scaling consistent with expected N6
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Backup: One problem with flat directions
Gauge fields Ua can move far away from continuum form IN +Aa

if Nµ2/(2λlat) becomes too small

Example for two-color (λlat, µ, κ) = (5, 0.2, 0.8) on 83×24 volume

Left: Bosonic action is stable ∼18% off its supersymmetric value

Right: Polyakov loop wanders off to ∼109

David Schaich (Syracuse) Lattice Supersymmetry Lattice for BSM, April 2015 23 / 23



Backup: Another problem with U(1) flat directions
Flat directions in U(1) sector can induce transition to confined phase

This lattice artifact is not present in continuum N = 4 SYM

Around the same λlat ≈ 2. . .
Left: Polyakov loop falls towards zero

Center: Plaquette determinant falls towards zero
Right: Density of U(1) monopole world lines becomes non-zero
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Backup: Restoration of Qa and Qab supersymmetries
Restoration of the other 15 Qa and Qab in the continuum limit

follows from restoration of R symmetry (motivation for A∗4 lattice)

Modified Wilson loops test R symmetries at non-zero lattice spacing

To be revisited with the improved action
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Backup: N = 4 static potential from Wilson loops

Extract static potential V (r) from r × T Wilson loops

W (r ,T ) ∝ e−V (r) T

Coulomb gauge trick from lattice QCD reduces A∗4 lattice complications
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Backup: Perturbation theory for Coulomb coefficient

For range of λlat currently being studied perturbation theory
for the U(3) Coulomb coefficient appears well behaved
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Backup: More tests of the U(2) static potential

Left: Projecting Wilson loops from U(2) −→ SU(2)
=⇒ factor of N2−1

N2 = 3/4

Right: Unitarizing links removes scalars =⇒ factor of 1/2

Both expected factors present, although (again) noisily

To be revisited with the improved action
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Backup: More tests of the U(3) static potential

Left: Projecting Wilson loops from U(3) −→ SU(3)
=⇒ factor of N2−1

N2 = 8/9

Right: Unitarizing links removes scalars =⇒ factor of 1/2

Ratios look slightly higher than expected, not as noisy as N = 2

To be revisited with the improved action
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Backup: Smearing for noise reduction
Smearing may reduce noise in static potential (etc.) measurements
—Stout smearing implemented and tested
—APE or HYP (without unitary projection) may work better for Konishi

May be less important with the improved action
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Backup: Konishi operator on the lattice

OK =
∑

I

Tr
[
ΦIΦI] I = 1, · · · ,6

On the lattice the scalars ΦI are twisted
and wrapped up in the complexified gauge field Ua

Given Ua ≈ IN +Aa the most obvious way to extract the scalars is

ϕ̂a = UaUa −
1
N

Tr
[
UaUa

]
I

This is still twisted, so all {a,b} contribute to R-singlet Konishi

ÔK =
∑
a, b

Tr
[
ϕ̂aϕ̂b

]
a, b = 1, · · · ,5
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Backup: Scaling dimensions from Monte Carlo RG

Write system as (infinite) sum of operators Oi with couplings ci

Couplings ci flow under RG blocking transformation Rb

n-times-blocked system is H(n) = RbH(n−1) =
∑

i c(n)
i O

(n)
i

Consider linear expansion around fixed point H? with couplings c?
i

c(n)
i − c?

i =
∑

j

∂c(n)
i

∂c(n−1)
j

∣∣∣∣∣∣
H?

(
c(n−1)

j − c?
j

)
≡

∑
j

T ?
ij

(
c(n−1)

j − c?
j

)

T ?
ij is the stability matrix

Eigenvalues of T ?
ij −→ scaling dimensions of corresponding operators
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Backup: Pfaffian phase dependence on λlat, µ, κ

Fluctuations in phase grow as λlat increases
but we observe little dependence on κ

To be revisited with the improved action
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