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Context: Why lattice supersymmetry

Lattice discretization provides non-perturbative,
gauge-invariant regularization of vectorlike gauge theories

We've discussed many ways lattice studies
can improve our knowledge of strongly coupled field theoriesJ

We can imagine many potential susy applications, including

@ Compute Wilson loops, spectrum, scaling dimensions, etc.,
complementing perturbation theory, holography, bootstrap, ...

@ Further direct checks of conjectured dualities
@ Predict low-energy constants from dynamical susy breaking

@ Validate or refine AdS/CFT-based modelling
(e.g., QCD phase diagram, condensed matter systems)
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Context: Why lattice supersymmetry

Lattice discretization provides non-perturbative,
gauge-invariant regularization of vectorlike gauge theories

We've discussed many ways lattice studies
can improve our knowledge of strongly coupled field theoriesJ

We can imagine many potential susy applications, including

@ Compute Wilson loops, spectrum, scaling dimensions, etc.,
complementing perturbation theory, holography, bootstrap, .. .

@ Further direct checks of conjectured dualities
@ Predict low-energy constants from dynamical susy breaking
@ Validate or refine AdS/CFT-based modelling
(e.g., QCD phase diagram, condensed matter systems)

Many ideas probably infeasible; relatively few have been explored )

David Schaich (Syracuse) Lattice Supersymmetry Lattice for BSM, April 2015 2/23



Context: Why not lattice supersymmetry

There is a problem with supersymmetry in discrete space-time
Recall supersymmetry extends Poincaré symmetry
by spinorial generators Q!, and 5; withI=1,.-- N

The resulting algebra includes {Qa,ad} =208 P,

P,, generates infinitesimal translations, which don’t exist on the lattice
= supersymmetry explicitly broken at classical level

v

Explicitly broken supersymmetry —> relevant susy-violating operators
(typically many)

Fine-tuning their couplings to restore supersymmetry
is generally not practical in numerical lattice calculations
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Special cases in four dimensions
Minimal (N = 1) supersymmetric Yang—Mills
SU(N) gauge theory with massless gaugino in adjoint rep.

No scalar fields
= gaugino mass is only relevant susy-violating operator
= chiral lattice fermions (overlap / domain wall) protect susy

Scalar fields (from matter multiplets or non-minimal susy)
introduce many more relevant susy-violating operators

In this case (some subset of) the susy algebra must be preserved

to permit practical lattice calculations
Maximal (N = 4) supersymmetric Yang—Mills (SYM)
The only known 4d system with a supersymmetric lattice formulation

Remainder of talk will focus on recent progress with lattice A’ = 4 SYM
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Exact susy on the lattice: N' =4 SYM

N =4 SYM s a particularly interesting theory
—Context for development of AdS/CFT correspondence
—Testing ground for reformulations of scattering amplitudes

—Arguably simplest non-trivial field theory in four dimensions

Basic features:

@ SU(N) gauge theory with four fermions W! and six scalars ¢V,
all massless and in adjoint rep.

@ Action consists of kinetic, Yukawa and four-scalar terms
with coefficients related by symmetries

@ Supersymmetric: 16 supercharges Q!, and 5; withlI=1,.-- 4
Fields and Q’s transform under global SU(4) ~ SO(6) R symmetry

@ Conformal: g function is zero for any 't Hooft coupling A
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Exact susy on the lattice: topological twisting

What is special about N' = 4 SYM
The 16 fermionic supercharges @', and 52 fill a Kahler—Dirac multiplet:

Q & @ &
o & Fa Fa Y — O+ 4,0 + Y D + V15 Lpwp + ¥5Qupo

—1 —2 —3 —4 — Q +72Qa + Va7 Lab

Qd Qd Od Qd Witha,b=17"'a5

v

This is a decomposition in representations of a “twisted rotation group”

SO(4), = diag|SO(4).,. ® SO(4)r SO(4)r € SO(6)R

This change of variables gives a susy subalgebra {Q, Q} =202 =0
This subalgebra can be exactly preserved on the lattice
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Twisted N/ = 4 SYM

Everything transforms with integer spin under SO(4), — no spinors

Q. and @, — Q, Qa and Qu
v! and WI —n, g and xap
A, and oY — A, = (A, 6)+i(B.,$) and A,

The twisted-scalar supersymmetry Q acts as

Q-Aa:@ba Q¢a:0
QXab:_?ab Qﬂa:O
Qn=d Qd=0

bosonic auxiliary field with e.o.m. d = DA,

@ O directly interchanges bosonic «— fermionic d.o.f.

@ The susy subalgebra Q2 - = 0 is manifest
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Lattice N =4 SYM

The lattice theory is very nearly a direct transcription

@ Covariant derivatives — finite difference operators
@ Gauge fields A; — gauge links U,

Q-Aa—>QUa:¢a Q¢a:O
Q Xab=—Fab QA —QU,=0
Qn=d Qd=0

@ Naive lattice action retains same form as continuum action
and remains supersymmetric, 9S =0
Geometrical formulation facilitates discretization
n live on lattice sites 14 live on links
Xab Connect opposite corners of oriented plaquettes

Orbifolding / dimensional deconstruction produces same lattice system

David Schaich (Syracuse) Lattice Supersymmetry Lattice for BSM, April 2015 8/23



Five links in four dimensions — Aj lattice

—Can picture A} lattice
as 4d analog of 2d triangular lattice

—Preserves S5 point group symmetry

—Basis vectors are non-orthogonal
and linearly dependent

Ss irreps precisely match onto irreps of twisted SO(4) 4y

5=401: Uy — A, +iB,, ¢+id
¢a—’¢u» ﬁ
10=6D4: Xab — Xupv» E/,L
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Twisted A/ = 4 SYM on the A} lattice
—We have exact gauge invariance
—We exactly preserve Q, one of 16 supersymmetries

—The S5 point group symmetry
provides twisted R & Lorentz symmetry in the continuum limit

The high degree of symmetry has important consequences

@ Moduli space preserved to all orders of lattice perturbation theory
— no scalar potential induced by radiative corrections

@ [ function vanishes at one loop in lattice perturbation theory
@ Real-space RG blocking transformations preserve Q and Ss

@ Only one marginal tuning to recover Q4 and Qg in the continuum

v

The theory is almost suitable for practical numerical calculations. .. J
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Numerical complications
@ Complex gauge field = U(N) = SU(N) ® U(1) gauge invariance
U(1) sector decouples only in continuum limit

Q@ Q U, = v, = gauge links must be elements of algebra

Resulting flat directions required by supersymmetric construction
but must be lifted to ensure U5 = Iy + Az in continuum limit

We need to add two deformations to regulate flat directions
SU(N) scalar potential oc 2 Y-, (Tr [Ualda] — N)2
U(1) plaquette determinant ~ G3_ ., (detPap — 1)

Scalar potential softly breaks Q supersymmetry
susy-violating operators vanish as ;2> — 0

Plaquette determinant can be made Q-invariant (new development)
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New development (arXiv:1504.0____)

Scalar potential softly breaks Q supersymmetry J

Plaguette determinant can be made Q-invariant

Basic idea: Modify the equations of motion — moduli space
d(n) =Dy Ua(n) — Dy Ua(n) + GY_ [det Pap(n) — 1]
a#b
Produces much smaller violations of Q Ward identity (sg) = 9N?/2

02

1
N =4SYM, U(2) N =4SYM, UQ2)
44 At =1
0.15 01
18 o Unimproved —¢— Ksm=18 .01
18 N Improved —A— 18
005 0.001 /
Unimproved ——
""" 4 Improved —a—
0 0.0001
0 1 2 3 4 s 6 7 s 120 116 112 s 16 14
Alat a/L
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Aside: Public code for lattice N = 4 SYM

s0 that the full improved action becomes
Simp = 9m+5‘r ed + Seoft (3.10)

Stract = 2)\ ZTI

= Fa(m)Fan(m) = Xan(m)D}, () = n(m)DE ()

+

ol =

2
(ﬁé’)u«m) +GY (det Puyln) — 1) H.\> } ~ St
azb
N 5 - - -
S = g3, -G Z T [(n)] 2 [det P ()] Tr [ub Yn)hy(n) + Uy (n + D)ba(n + h)}

N s (-
Setosed =~ Tt [cabede Xae(n + Ba + By + B)De xap(n)] ©
8Nt

Stogt = o QZZ( ()] ~ 1 )2

The lattice action is obviously very complicated

(For experts: =100 inter-node data transfers in the fermion operator)

To reduce barriers to entry our parallel code is publicly developed at
github.com/daschaich/susy

Evolved from MILC lattice QCD code, presented in arXiv:1410.6971
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Physics result: Static potential is Coulombic at all A

Static potential V(r) from r x T Wilson loops: = W(r, T) e /)T |

0.06

N =4SYM,UN) (Ao 1, %) = (1,1,1)

Fit V(r) to Coulombic 83 % 24
or confining form 05}
V(iry=A-C/r Voml
V(ir)=A—-C/r+or
0.03 +
C is Coulomb coefficient
o is string tension 002 -
0 0.5 3

Fits to confining form always produce vanishing string tension o = 0

To be revisited with the improved action
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Coupling dependence of Coulomb coefficient
Perturbation theory predicts C(\) = \/(47) + O()\?)
AdS/CFT predicts C(\) o< VA for N — 00, A — 00, A < N

2 n=02=0: N = 435YM, uQ®) e = g;,K = ::g —a— N =4SYM, UQ3)
u= 8 x24 0.1 Z - 0'4::;0:6 —— 83 x24
015 u= [ 1=04,k=08 6
s i 0.08 | byyin = 6 N:iﬁ ~~~~~~~~~~~ )
............. A 9
C o1t 3 C 006 s ®
§ T g A
0.04 ‘,,,-""'
005 ® ’,_..gg"
X 002 g ’
0 0 PRELIMINARY
0 05 1 15 2 0 02 04 06 08 1 12 14
Aot / V5 Aiat / V5
Left: Agreement with perturbation theory for N =2, A <2
Right: Tantalizing v/\-like discrepancy for N = 3, A > 1

No visible dependence on (unimproved) soft Q breaking
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Recapitulation

@ Lattice supersymmetry is both enticing and challenging

@ N =4 SYM is practical to study on the lattice
thanks to exact preservation of susy subalgebra Q2 = 0

@ The theory is simple; the lattice action is complicated
— Public code to reduce barriers to entry

@ The static potential is always Coulombic
For N =2 C()) is consistent with perturbation theory
For N = 3 we may be seeing behavior predicted by AdS/CFT

@ Many more directions are being — or can be — pursued
» N =4 anomalous dimensions, e.g. for Konishi operator

» Understanding the (absence of a) sign problem

» Systems with less supersymmetry, in lower dimensions,
including matter fields, exhibiting spontaneous susy breaking, ...
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Thank you!
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Thank you!

Collaborators
Simon Catterall, Poul Damgaard, Tom DeGrand and Joel Giedt J

Funding and computing resources J

usQcb

David Schaich (Syracuse) Lattice Supersymmetry Lattice for BSM, April 2015 17/23



Supplement: Konishi operator scaling dimension

N =4 SYM is conformal at any A

All correlation functions decay algebraically o« r—4

The Konishi operator is the simplest conformal primary operator

Ok = ZTr [¢I¢I] Ck(r) = Ok(x + r)Ok(x) = Ar—22«
T

There are many predictions for the scaling dim. Ax(\) = 2 + vk ()
@ From weak-coupling perturbation theory,

related to strong coupling by TN «— 2o S duality

@ From holography for N — oo and A — co but A < N
@ Upper bounds from the conformal bootstrap program
We will add lattice gauge theory to this list

)
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Konishi operator on the lattice

Ok = zI:Tr [010] — O = ZbTr 7°¢"]
a,

— 1 —
with 3% = Ualla — T [Ualla) In

0.01

~ I ~ © N =4SYM,UQ)
Ck(r) = Ok(x + r)Ok(x) o< r=24« s, g
0.001 - X e
. . a7
Need improved action "-~-.\M
for reasonable C(r) on 8* lattice ¢***™'| ; S VY
. . le-05 | Aag =1 ‘f 1
Improved results consistent with , et o l
. . nimproved —>¢—
power law using perturbative Ak 16406 Ak = 3/dr e ‘
0.5 1 2 3

r

Fitting aK(r) is not a stable way to find Ax — we have better tools J
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Preliminary Konishi Ak from Monte Carlo RG

Eigenvalues of MCRG stability matrix — scaling dimensions

Simple trial (1 x 1 stability “matrix”)
correctly finds Ak —2as A\ — 0

Only statistical errors so far

Will check with independent
finite-size scaling analysis

Many systematics to investigate

* Larger volumes

Ax

* More operators in stability matrix

* (u, G) dependence

34

32t

28

26+

24+

2

N =48YM, U(2)

PRELIMINARY

o
A
84 > 44

Bootstrap bound
Perturbative

0

0.5 1 1.5

* More RG blocking steps
* RG optimization

* Az renormalization

Atat

25 3 35 4

v
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Supplement: The (absence of a) sign problem

In lattice gauge theory we compute operator expectation values

(0) = % / [aU][dtd] © &S 3 pi Dl Tl]

pf D = |pf D|e’™ can be complex for lattice N = 4 SYM
— Complicates interpretation of [~ pf D] as Boltzmann weight

Have to reweight “phase-quenched” (pq) calculations

_ <(9e"°“>pq

(0) o

_ 1 ) oSl ]
m= g / [U[dT] O pfD|  (O)

Sign problem: This breaks down if (e"a> g is consistent with zero J
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lllustration of sign problem and its absence

@ With periodic temporal fermion boundary conditions
we have an obvious sign problem, <e’°‘>pq consistent with zero

@ With anti-periodic BCs and all else the same <e’°‘>pq ~ 1
— phase reweighting not even necessary

N =4 SYM, U(2) [Anti-periodic BCs +

33 x 4 Periodic BCs X
5 ¥ ! 'Wxxx
Even stranger X el *
Other (0),, nearly identical £ _ %
despite sign problem... ___Improved|action

1 (Lu,G)(1,08,0.1)

£
)3%( X
Xxx»cl —xx%xxg&
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Pfaffian phase dependence on volume and N

No indication of a sign problem with anti-periodic BCs
@ 1 — (cos(a)) < 1 means pf D = |pf D|e'* nearly real and positive
@ Fluctuations in pfaffian phase don’t grow with the lattice volume
@ Insensitive to number of colors N =2, 3, 4

@ To be revisited with the improved action

1 24 3Px4 Px6 3Ix8 44 $x5 £x6
N=2 % N = 4SYM, UN)
Hard calculations 001 [N =4 —a— (lats p, ) = (1, 1,1) |
x ® x x X x X
Each 43 x 6 measurement 0.0001
required ~8 days, 1 -(cosa) - X 0.003F 3]
~10GB memory 0.002 } } ]
le-08 }
Parallel O(n®) algorithm N 250 0
~ 50 150 250 350
v
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Backup: Failure of Leibnitz rule in discrete space-time
Given that {Oa,éd} = 20", P, = 2ic" .0, is problematic,

why not try {Qa,bd} = 2i0!,V,, for a discrete translation?
Here V,6(x) = 3 [o(x + afi) — ¢(x)] = 9.6(x) + §056(x) + O(&%)
Essential difference between 9, and V,, on the lattice, a > 0

Vi [60)x(0] = @ [¢(x + an)x(x + an) — (x)x(x)]
= [Vuo()] x(X) + () Vux(x) + a[V .o (x)] V,x(X)

We only recover the Leibnitz rule 0,,(fg) = (0,.f)g + f0,g when a — 0
— “Discrete supersymmetry” breaks down on the lattice
(Dondi & Nicolai, “Lattice Supersymmetry”, 1977)
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Backup: Twisting «—— Kahler—Dirac fermions

The Ké&hler-Dirac representation is related to the usual o;,di by

Q @@ @& &
o « « « P Q + ’.Y,UQ;U' + FY‘U,PYVQ'U,V + Py‘u,’)/S Q/J,yp + ’YSQ,U,VpO'

—1 —2 —3 —a4 — Q4+ vaQa+ Va7V Qab

Qu Qu Qu Qq witha,b=1,--- .5

The 4 x 4 matrix involves R symmetry transformations along each row
and (euclidean) Lorentz transformations along each cquan

= Kahler—Dirac components transform under “twisted rotation group”

SO(4),, = diag [80(4)euc ® SO(4)R]

TonIy SO(4)r C SO(B)R
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Backup: Aj lattice with five links in four dimensions

Az = (A, ) may remind you of dimensional reduction

On the lattice we want to treat all five U/; symmetrically
to obtain S5 — SO(4)n, symmetry

—Start with hypercubic lattice _ b
in 5d momentum space / . e®
Tneese
—Symmetric constraint ), 0, =0 e 0 09 OO
projects to 4d momentumspace / o © @O © &
® o .é OO o
) 0
¢ &8 8 “,:0 o

, , @
—Result is A4 lattice 0% 0
* . . . ‘ . o
— dual Aj lattice in real space - 00%°0
0.
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Backup: Hypercubic representation of Aj lattice

It is very convenient to represent the A; lattice
as a hypercube with a backwards diagonaIJ
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Backup: Twisted N' = 4 SYM action

Twisting gives manifestly supersymmetric action for A/ = 4 SYM

N — 1 N _
S= Q( ]:—IrDA—d)—e D
2\t Xab/ ab T NP aAa 277 8\ iat abcde Xabt'cXde

QS = 0 follows from Q2 - = 0 and Bianchi identity

The lattice theory is very nearly a direct transcription
@ Covariant derivatives — finite difference operators
@ Gauge fields A5 — gauge links U/,
@ Lattice action retains same QS = 0 form as above

The unimproved action directly adds

N (1 _ 2 5
= —_— _— —_ —_ 1
Seoft 5 Alat“ < NTr [Uald ] 1> + Kk |det Py — 1

Both terms in S,y softly break the Q supersymmetry
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Backup: Unimproved soft susy breaking

Directly adding scalar potential and plaquette determinant to action
explicitly breaks supersymmetry — det P, causes dominant effect

Left: The breaking is soft — guaranteed to vanish as y,x — 0

Right: Soft Q breaking also suppressed o 1/N?

N =4SYM, UNN)
44

<003

-0.06
(sp)-4.5N*
45N?

<009

-0.12

N =4SYM, UQ2) (A1ats 1, k) = (1,1, 1)
44 n

1/4* 1/3 1/2*
0 0.2 04 P 0.6 08 1 1 /NZ

-0.15
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Backup: Code performance—weak and strong scaling
Left: Strong scaling for U(2) and U(3) 162 x32 RHMC

Right: Weak scaling for O(N3) pfaffian calculation (fixed local volume)
Ny = 16N?L3N7 is number of fermion degrees of freedom

To be revisited with the improved action

V.
Local volume: 8 4 x 8§ 4 F x4 Fx6 3P x8
A N =4SYM, UN) 0L A7 = 4 SYM, U2)
10 v 163 x 32 A, 0) = (1,1,1)
5 p— (A px) = (1,1,1) 50
2 Rl ¥
Hours O v Core-hours
per MDTU 1 .. - v 20
05 @
10
o .
02 |y- - .
felaf —e— T ] § [Pover: 2867
01
8 16 32 64 128 256 512 100 150 200 250
# of cores |4

Both plots on log—log axes with power-law fits
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Backup: Numerical costs for 2, 3 and 4 colors

Red: Find RHMC cost scaling ~N® (recall adjoint fermion d.o.f. ocN?)

Blue: Pfaffian cost scaling consistent with expected N®

100

10 -

Core-hours

0.1

David Schaich (Syracuse)

N = 4SYM, U(N)

Awo =@LLY '
....... v
------------------- s
A
@ g
X 24 HMC —s—
‘ 2 x 4 plaffian ——
2 3 4

N
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Backup: One problem with flat directions

Gauge fields U/, can move far away from continuum form Iy + A,

if Nu? /(214 ) becomes too small

Example for two-color (A, i1, k) = (5,0.2,0.8) on 82 x 24 volume

Left: Bosonic action is stable ~18% off its supersymmetric value

Right: Polyakov loop wanders off to ~10°

03

N =48SYM, U(2)

025 83 x24

02 fp
|(sp)—18]
Kem =8 015

0.1

0.05

(A p,k) =(5,0.2,0.8)
i 500 1000 1500 2000 2500
MDTU
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(IPL])
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le+10

1e+08

1e+06

10000

100

1

N =4SYM, U(2)
8 x24
(A, p1,4) = (5,0.2,0.8)

500 1000 1500 2000 2500

MDTU
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Backup: Another problem with U(1) flat directions

Flat directions in U(1) sector can induce transition to confined phase

This lattice artifact is not present in continuum A/ = 4 SYM

|

06
{PL)

04

o
p -

(1.0 = (1,0)

N =48YM, U2)

06
(Re detP)

04

Around the same A\ ~ 2. ..
Left: Polyakov loop falls towards zero
Center: Plaquette determinant falls towards zero

Right: Density of U(1) monopole world lines becomes non-zero
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a

N =48SYM, U2)

®

6 ——
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02
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Backup: Restoration of 9, and Q_ supersymmetries

Restoration of the other 15 Q4 and Qp, in the continuum limit
follows from restoration of R symmetry (motivation for A; lattice)

Modified Wilson loops test R symmetries at non-zero lattice spacing

To be revisited with the improved action

N = 4SYM, U(2)
0.12 - 83 % 24
o1| PRELIMINARY

LA 0.08 -
rw
e 4x4
n=02,k=0.6 ———
0.04 | pn=02,x=0.8 —x—
u=04,k=06 -~
n=04,xk=08 -0
o n=08,x=0.6 —s—
0 u=08,x=08
0 1 2 3 4 s
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Backup: N = 4 static potential from Wilson loops

Extract static potential V(r) from r x T Wilson loops
W(r, T)xe V(O T J

Coulomb gauge trick from lattice QCD reduces A} lattice complications
/\
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Backup: Perturbation theory for Coulomb coefficient

For range of A\, currently being studied perturbation theory
for the U(3) Coulomb coefficient appears well behaved
1
0.01 -
0.0001 - -
1e-06 —
AC ;
1e-08 | ¢
tet0 |
tetz | (=1) - 2 terms —weeveeee- 1
; 2* LL+NLL
(-1) - 2% LLANLL -----oeev
le-14 1 L I . ! )
0 0.2 0.4 0.6 0.8 1 1.2 14

/llat / \/g
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Backup: More tests of the U(2) static potential

Left: Projecting Wilson loops from U(2) — SU(2)
— factor of 21 = 3/4

Right: Unitarizing links removes scalars = factor of 1/2

N=4 SYM, i[P) 'MNZ4SYM, UQ)

DETIE R P

4

05
0.25 p=02,k=06 —a&—  p=04,x=08 —— 02 1=02,k=06 —a—  p=04,k=08 ——
p=02,k=08 —x—  u=08,k=06 —v— 1=02,k=08 —¥—  p=08,k=06 —5—
0 £=04,k=06 —B—  p=08,k=08 N u=04,k=06 —B—  u=08,k=08
0 05 1 15 2 0 05 1 15
Aat / V5 A / V5

Both expected factors present, although (again) noisily

To be revisited with the improved action
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Backup: More tests of the U(3) static potential

Left: Projecting Wilson loops from U(3) — SU(3)

— factor of levg‘ =8/9

Right: Unitarizing links removes scalars —> factor of 1/2
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Ratios look slightly higher than expected, not as noisy as N =2

To be revisited with the improved action
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Backup: Smearing for noise reduction

Smearing may reduce noise in static potential (etc.) measurements
—Stout smearing implemented and tested
—APE or HYP (without unitary projection) may work better for Konishi
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May be less important with the improved action
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Backup: Konishi operator on the lattice

OK:ZTr[cbICDI] I=1,---.,6
On the lattice the scalars @' are twisted
and wrapped up in the complexified gauge field U,

Given Uy =~ I + A the most obvious way to extract the scalars is

@a - Uaaa - 1NTF [Z/{aaa] ]I

This is still twisted, so all {a, b} contribute to R-singlet Konishi

OK—ZTr[AaAb} ab=1-.5
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Backup: Scaling dimensions from Monte Carlo RG

Write system as (infinite) sum of operators O; with couplings c;
Couplings c¢; flow under RG blocking transformation Ry,

n-times-blocked system is H() = R,H("=1) = 3, (" o)

Consider linear expansion around fixed point H* with couplings c*

(n)
C'(n)_"*_zaifnnw (6" ~q) = Z (" —q)

H*

T is the stability matrix

Eigenvalues of T,.j* — scaling dimensions of corresponding operators J
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Backup: Pfaffian phase dependence on Ay, u,

Fluctuations in phase grow as Ay, increases
but we observe little dependence on «

To be revisited with the improved action
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