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Overview

» Chaotic behavior of gauge theories
using real-time dynamics

* Motivations:
 Thermalization in quark-gluon plasma
* Black hole dynamics

» Classical dynamics of 0+1D gauge theory with
matrix degrees of freedom



The Gauge Theory



Matrix gauge theory
L%Tr(z 2 4 = ZX,L,X ) T

1=1 7,] 1

gauge field,
fermions

e Quantum mechanics of N x N Hermitian matrices:
X1(t),...,Xo(t)

 U(N) gauge symmetry, SO(9) global symmetry

» Large Nlimit: keep A = ¢2,,N fixed



Holographic dualities

Supersymmetric
Yang-Mills in 3+1D

‘ ' 9+1D Gravity
(string theory)

Black hole

High temperature  <m—

Large N,
strong coupling

Matrix gauge theory ﬁ .
n 0+1D Gravity

X1,..., X9 [Banks, Fischler, Shenker, Susskind 1997]




Matrix model
holographic duality

9+1D

Particle




Matrix model
holographic duality

9+1D




Holographic duality
at finite temperature

Thermal state of Black hole in a
matrix gauge theory gravity theory

Xi — ( ' )NxN
il
U~ Tr[X;, X,;]°

e Valid at large N, strong coupling
* \We focus on weak coupling — large stringy corrections
e But: no phase transition in the coupling



Real-time dynamics
of matrix gauge theory



Weak coupling limit of
matrix model

L= %Tr (Z(X"')Z ™ % D [Xian]z) + -

1=1 1,7=1

A

» Effective dimensionless coupling: | Aeg = =3

 [arge N, weak coupling / high temperature limit
— classical dynamics

o Classical observables are functions of A.g T



Equations of motion

Discretize
and solve




L yapunov exponent

Long time,
small perturbation:

02(t)] ~ e t62(0))

Positive exponent
f(()) signals chaotic behavior




Measuring the
Lyapunov exponent

@
Fix the energy

(micro-canonical
ensemble)




Measuring the
Lyapunov exponent

Evolve for a while
to reach a typical state

Fix the energy
(micro-canonical
ensemble)




Measuring the
Lyapunov exponent

Evolve for a while
to reach a typical state

-

Fix the energy Perturb

(micro-canonical
ensemble)




Measuring the
Lyapunov exponent

Evolve for a while
to reach a typical state

Measure
distance

~ exp()\Lt)

—

Fix the energy Perturb

(micro-canonical
ensemble)




Real-time
exponential growth
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1/N behavior
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L yapunov exponent:
gauge theory vs. black holes

ol A
Black hole
holographic dual
\ No phase | 9rap |
L fransition [Sekino, Susskind 2008]
Classical [Shenker, Stanford 2014]

[Maldacena, Shenker,

~ )\iéf T Stanford 2014]
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Scrambling time and
large N behavior

e Scrambling time =
time to completely de-localize a local perturbation

e Numerically: exp(Apty) ~ VN

| ~ VN

0.100¢}

0.001}

0X]|

107°}

1077}

60 80 100



Scrambling time and
large N behavior

e Scrambling time =
time to completely de-localize a local perturbation

e Black holes are ‘fast scramblers’:
ty ~log§ ~ log N

e Same behavior in our system:

)\LNN07 t*N NlOgN




Real-Time Correlators



Lyapunov exponent
from correlators

Motivation: Making contact with the quantum theory



Lyapunov exponent
from correlators

* Choose operators with vanishing 1-point functions

<Tr(X7;Xj)(()) Tr(Xin)(t)> (i # §)




Lyapunov exponent
from correlators

* Choose operators with vanishing 1-point functions

<Tr(X7;Xj)(()) Tr(Xin)(t)> (i # §)




Exponent

Lyapunov exponent vs.

correlator exponents
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| yapunov Spectrum



L yapunov spectrum

Generic perturbation grows as:
0Z(t)| ~ exp(ALt)[07(0))
Tuned perturbations have different exponents
There is a spectrum of Lyapunov exponents:
Nno. exponents = dimension of phase space

Lyapunov exponent Ay, is the largest eigenvalue



L yapunov spectrum

02 (t)] ~ e
SR el A —

o 57 (t)] ~ e
57




L yapunov spectrum
motivation

e Detailed information about chaotic behavior

« Kolmogorov-Sinai entropy measures rate of entropy
production

e Approximated by sum of positive exponents

[Kunihiro, Mdller, et al. 2010]



Measuring the spectrum

e Lyapunov spectrum = spectrum of transfer matrix

5X; = 0Vi, Vi =[6X,,[Xs, X;]] + -




Global Lyapunov spectrum

 Measure spectrum of U(t) at late times
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|_ocal Lyapunov spectrum

e Spectrum of U(t) at short time
* Lyapunov exponent is not the largest eigenvalue
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-ast eigenvector evolution

e(0) Lgrgest
.- _ €lgenvector
0x(0)




-ast eigenvector evolution

(0x(t),02(0))

Perturbation
overlap
(normalized)

log scale
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i
Perturbation cannot catch up with evolving eigenvector!



Random matrix toy model

* Toy model: Evolve with random matrices
6x(t) = (Up)® - (U1)*62(0) ~ e éx(0)

e Spectrum + time step taken from gauge theory

 Measure exponent




Random matrix exponents

0.55

0.50 Random
' matrices

0.45 .
0.40
0.35

0.30 o
0.25 Gauge
theory

0'200.00 0.05 0.10 0.15
1/N

exponent




summary

Real-time chaotic behavior in classical gauge theory

Lyapunov exponent converges at large N

Fast scrambling behavior, similar to black holes

Relation to real-time correlators

Going to higher dimensions:

UV cascade, classical approx. may break down

Thank You!






Discretization

Fi(t) = Z[Xj (1), [Xs(t), X;(t)]]

Xi(t+dt) = X;(t) + Vi(t)dt + Fi(?f)g%52

Vi(t +dt) = Vi(t) + [F;(t) + Fi(t + dt)] %



Sprott's algorithm

 Make a small perturbation X -> X+dX
—> ¢ Evolve one time step aX -> aX’

* Record log(|dX’| / |dX])

— ¢ Rescale |dX’| -> [dX]

(log ‘\fs))((/\‘> AL



Error accumulation
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Exponent vs.
thermalization time
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Classical coupling
dependence

N y o
AE = T (XZ ' XJ]Z)

A, = fOAT) = f(AegT?) ~ T

A ~ AT



