Non-unitary CFT duals to de Sitter quantum gravity

Edgar Shaghoulian

University of California, Santa Barbara

Lattice for Beyond the Standard Model Physics Lawrence Livermore National Laboratory April 25, 2015

Contents

- Cosmology and holography
- ► Higher-spin dS₄/CFT₃
 - ▶ Wavefunctional calculations [Anninos, Denef, Konstantinidis, ES]
 - Extension of duality to parity-violating phases [Anninos, Mahajan, Radicevic, ES]
- Summary of open questions

Expanding universe

Holography and Cosmology

•00

Accelerated expansion applies both to

- ▶ the inflationary era
- ▶ our current/late-time universe ("dark energy" domination)

Quantum mechanics + Gravity + Accelerated expansion =?

dS4/CFT3: Extensions

Holography and Cosmology

de Sitter spacetime

Both accelerating eras are well-approximated by the de Sitter geometry:

$$ds^2 = -dt^2 + e^{2Ht} dx_i^2.$$

This represents an *exponentially* expanding spacetime.

Observer cosmological horizons obey thermodynamical laws, with S = A/4.

Fundamental questions: how do we understand quantum gravity "in" such a spacetime? What are the observables? What is the meaning of the horizon entropy? Proposal: Construct a holographic dual theory.

Holography: dS/CFT

Holography states that quantum gravity in d+1 dimensions is equivalent to a QFT without gravity in d dimensions. There exists a(n incomplete) dictionary between the two in certain cases.

dS/CFT proposal [Maldacena; Strominger; Witten]:

$$\Psi_{HH}[\sigma,\dots] = Z_{CFT}[\sigma,\dots]$$

Renormalization group flow of QFT reconstructs emergent time dimension.

Renormalization group flows are often between two fixed points; maybe in our universe these fixed points are the inflationary era and dark-energy domination! [Strominger]

Sp(N) theory

Certain higher-spin theory, containing all even spins nonlinearly interacting, dual to free Sp(N) theory of anticommuting scalars (non-unitary!) [Anninos,

Hartman, Strominger]:

$$S = \frac{1}{2} \int d^3x \; \Omega_{ab} \, \partial_i \chi^a \partial_i \chi^b, \qquad \Omega_{ab} = \begin{pmatrix} 0 & 1_{N/2 \times N/2} \\ -1_{N/2 \times N/2} & 0 \end{pmatrix}.$$

Need to restrict the theory to singlet sector, i.e. only Sp(N)-invariant operators in spectrum. Also studied in condensed matter physics [LeClair, Neubert].

Critical theory dual to a different flavor of higher-spin theory:

$$S = \frac{1}{2} \int d^3x \, \left(\partial_i \chi \cdot \partial_i \chi + m \, \chi \cdot \chi + \lambda (\chi \cdot \chi)^2 \right) \,.$$

¹Also exists flavor of duality involving U(N) symmetry. $\square \rightarrow \langle \square \rangle \rightarrow \langle \square \rangle \rightarrow \langle \square \rangle$

What to do? Compute wavefunctionals!

Calculate $Z[g_{ij}, m]$ on planar topology:

$$S = \frac{1}{2} \int d^3x \sqrt{g} \,\Omega_{ab} \left(\partial_i \chi^a \partial_j \chi^b g^{ij} + \frac{R[g]}{8} \chi^a \chi^b + m(x^i) \chi^a \chi^b \right).$$

Preserve SO(3) symmetry: consider mass profile m(r) and metric deformation $ds^2 = dr^2 + f(r)^2 r^2 d\Omega_2^2$.

Gaussian theory: zeta-regularized partition function computed with Dunne-Kirsten formula on \mathbb{R}^3

$$\log \left(\frac{\det \left[-\nabla^2 + \mu^2 + m(r) \right]}{\det \left[-\nabla^2 + \mu^2 \right]} \right) = \sum_{l=0}^{\infty} (2l+1) \left(\underbrace{\log T^{(l)}(\infty)}_{\text{Gelfand-Yaglom}} - \underbrace{\frac{\int_0^{\infty} dr \ r \ m(r)}{2l+1}}_{\text{regularizer}} \right).$$

Constant mass on peanuts: divergence!

Consider peanut geometry and constant mass $m(x_i) = m_0$:

Figure: Left: $|\Psi_{HH}(\zeta,m)|^2$ for for $N=(\ell_{dS}/\ell_P)^2=2$ as a function of m_0 for peanut geometries ($l_{max} = 45$). Right: Zoomed in to de Sitter minimum.

$$\phi = \eta \nu(x^i) + \eta^2 \sqrt{N} m(x^i)$$

Spherical harmonics: killing the divergence

Figure : Left: Plot of $|\Psi_{HH}(A)|^2$ for the first harmonic mapped to \mathbb{R}^3 . Right: Plot of $\log |\Psi_{HH}(A)|^2$.

Figure: Plot of $\log |\Psi_{HH}(A)|$ for the first eight spherical harmonics mapped to \mathbb{R}^3 .

More evidence and a conjecture

Figure: $|\Psi_{HH}(A)|^2$ (left) and $\log |\Psi_{HH}(A)|$ (right) as a function of A, the overall size of a Gaussian deformation $m(r) = A (e^{-r^2} - m_0(r))$ constructed to be orthogonal to the zero mode of the three-sphere.

Conjecture: The partition function of any mass deformation for which the three-sphere zero mode harmonic is fixed is bounded.

Extensions of higher-spin dS_4/CFT_3

Can add dynamical Chern-Simons fields. Proposed to be dual to fancier higher-spin theory in de Sitter.

Consider the Sp(N) Chern-Simons-boson theory deformed by marginal triple-trace interaction:

$$S_{CS} = -\frac{ik}{8\pi} \int d^3x \, \epsilon^{\mu\nu\rho} \left(A^a_\mu \partial_\nu A^a_\rho + \frac{1}{3} f^{abc} A^a_\mu A^b_\nu A^c_\rho \right),$$

$$S_B = \int d^3x \left(\Omega_{ij} (D_\mu \chi)_i (D^\mu \chi)_j + N \frac{\lambda_6^b}{3!} \left(\frac{\Omega_{ij} \chi_i \chi_j}{N} \right)^3 \right), \quad D_\mu \equiv \partial_\mu + A_\mu.$$

We can calculate the beta functions of this theory as a function of $\lambda = N/k$, $\lambda_6 = g_6 N^2$. CS level k quantized and does not run.

Evidence for extensions on \mathbb{R}^3

Holography and Cosmology

$$\beta_{\lambda_6} = \frac{1}{16\pi^2 N^2} \left(12\lambda^4 (\pm N - 1) - 20\lambda^2 \lambda_6 (\pm N - 1) + \lambda_6^2 (\pm 3N + 22) \right)$$

Results on \mathbb{R}^3

An analogous set of dualities exists for the U(N) gauge theories!

Calculations

- Partition function calculates bulk wavefunctionals. Can we calculate the partition function for more general deformations? Is the wavefunctional still normalizable?
- Can we calculate the partition function in the presence of a dynamical Chern-Simons term?
- ▶ Does the critical Sp(N) theory exist at finite N?
- ► Can we calculate the partition function in the critical theory?
- ▶ Don't forget U(N) theories!
- Motivations: (a) de Sitter relevant to origin and fate of our universe. We do not understand it. (b) Higher-spin theory is intermediate between quantum field theory and string theory.
- ▶ References: Sp(N) proposal 1108.5735 , CS-Sp(N) 1405.1424 , 1309.7413 , Wavefunctions and critical Sp(N) discussion 1207.5517 , 1305.6321