

Markus Luty

UC Davis

Outline

Could the observed 125 GeV "Higgs" particle be a composite of strong dynamics?

Can this be studied on the lattice?

- "Higgs" as light composite scalar in technicolor
- "Higgs" as dilaton
- "Higgs" as pseudo Nambu-Goldstone boson
- Partially composite Higgs

"Higgs" as σ?

Could the observed "Higgs" be a composite techniscalar?

 Λ = scale of strong EWSB

$$\mathcal{L}_{\text{eff}} \sim (\partial \sigma)^2 + \Lambda^2 \sigma^2 + 4\pi \Lambda \sigma^3 + \cdots$$

$$+ \frac{\Lambda^2}{16\pi^2} g^2 W^2 + \frac{\Lambda}{4\pi} g^2 \sigma W^2 + \cdots$$
(NDA)

$$m_{W,Z} \Rightarrow \Lambda \sim 4\pi \nu \sim 3 \text{ TeV} \quad (\sim m_{\rho_{TC}})$$

1980s: flavor problems

1990s: Precision electroweak marginal (S, T, ...)

2010s: "Higgs" discovery

Focus on tuning of Higgs parameters...

$$\sigma$$
 Tuning? $m_{\sigma} \ll \Lambda \Rightarrow \underbrace{\text{unexplained suppression}}_{\text{"tuning"}} \sim \frac{m_h^2}{\Lambda^2} \sim 0.1\%$

 σ^3 coupling is relevant \Rightarrow must be suppressed to avoid unitarity violation down to m_h

cubic suppression
$$\sim \frac{m_h}{\Lambda} \sim 4\%$$
 additional tuning

$$g_{\sigma VV} \sim g_{hVV}^{(SM)}$$
 ...but ~ 100% corrections expected

$$\frac{\Delta g_{hVV}}{g_{hVV}^{(SM)}} \sim 10^{-1} \qquad \Rightarrow 10\% \text{ tuning}$$

$$\frac{\Delta g_{hff}}{g_{hff}^{(SM)}} \sim 2 \times 10^{-1} \quad \Rightarrow 20\% \text{ tuning}$$

"Higgs" as σ?

total tuning $\sim 10^{-6}$

"Higgs" as Dilaton?

Goldberger, Grinstein, Skiba (2007)

Assume conformal symmetry is spontaneously broken at scale $\Lambda \gg m_h$ by strong dynamics.

$$\Rightarrow$$
 dilaton $\varphi(x) \mapsto \lambda \varphi(\lambda x)$ $\lambda = \text{scale parameter}$

Spontaneous scale breaking \Rightarrow all scales $\propto \langle \phi \rangle$

$$\Rightarrow \mathcal{L}_{\text{eff}} = \frac{1}{2} \frac{m_W^2}{f^2} \varphi^2 W^2 + \frac{m_t}{f} \varphi \bar{t} t + \cdots$$

 φ couples to mass like a standard model Higgs.

"Higgs" as Dilaton?

Two problems:

- "tuning"
- Requires special structure of UV theory

Dilaton Tuning?

$$V_{\text{eff}} = \frac{\kappa}{4!} \varphi^4$$

Allowed by nonlinearly realized conformal symmetry \Rightarrow expect $\kappa \sim (4\pi)^2$

$$\varphi = f + \varphi'$$
 $\Rightarrow \mathcal{L}_{int} = \frac{m_W^2}{f} \phi' W^2 + \cdots$

Need f = v to 10% to explain $g_{\varphi VV} \simeq g_{hVV}^{(SM)}$

⇒ tuning
$$\sim \frac{\text{allowed range of } \kappa}{\text{expected value}} \sim 0.5\%$$

UV Theory for Dilaton?

Spontaneous breaking of conformal invariance requires special structure.

Conformal symmetry *explicitly* broken by running at Λ \Rightarrow no light dilaton expected.

Need approximate conformal symmetry at Λ \Rightarrow break conformal symmetry with $\Delta \simeq 4$ operator.

Natural Dilaton

Contino, Pomarol, Rattazzi (2010 [unpublished])
Chacko, Mishra (2012)
Coradeschi, Lodone, Pappadopulo, Rattazzi, Vitale (2013)

Coradeschi, Lodone, Pappadopulo, Rattazzi, Vitale (2013) Bellazzini, Csaki, Hubisz, Serra, Terning (2013)

$$\Delta \mathcal{L}_{\mathsf{UV}} = \lambda \mathcal{O}, \quad \Delta_{\mathcal{O}} = 4 - \epsilon$$

$$V_{\rm eff} = \frac{\kappa(\lambda(\varphi))}{4!} \varphi^4$$
 κ depends on λ

Assume
$$\kappa(\lambda) = 0$$
 at $\lambda = \lambda_* = \lambda(\phi_*)$

$$\Rightarrow \langle \kappa \rangle = O(\epsilon)$$

$$\underbrace{\epsilon \sim 10^{-3}}_{\text{tuning?}} \Rightarrow \langle \phi \rangle \sim v$$

Dilaton on the Lattice?

Dilaton requires a theory with very special structure:

- Theory must have fixed point with nearly dimension-4 operator.
- ullet Phase diagram depends on new marginal coupling λ
 - ⇒ modifications of UV action are not irrelevant!

PNGB Higgs

Strong sector has global symmetry *G* spontaneously broken to *H*

$$\Rightarrow$$
 NGBs \in G/H e.g. $SO(5)/SO(4)$ or $SU(4)/Sp(4)$

G exact \Rightarrow NGB's massless, derivatively coupled.

Theory has electroweak preserving vacuum:

Fluctuations about EW vacuum ⇔ Higgs

$$v = f \sin \theta$$

Recover standard model for $v \ll f$

PNGB Higgs

Requires tuning $\sim \frac{v^2}{f^2}$ (or "little Higgs" structure)

$$g_{hVV} = g_{hVV}^{(SM)} \times \left[1 + O(v^2/f^2)\right]$$

⇒ tuning ~ 10%

Top loops:
$$\Delta m_H^2 \sim \frac{N_c y_t^2}{16\pi^2} \Lambda^2 \sim 50 m_h^2$$

⇒ additional ~ 2% tuning...

...or top partners with mass below Λ .

Top Partners

Top + top partners fill out G multiplet \Rightarrow reduces G breaking in top + top partner loops.

$$\Delta m_H^2 \sim \frac{N_c y_t^2}{16\pi^2} m_T^2 \implies m_T \lesssim 1 \text{ TeV}$$

Current LHC bounds: $m_T \gtrsim 700-800 \text{ GeV}$

Flavor in composite Higgs?
Partial compositeness or Yukawa-type

Partial Compositeness

$$\Delta \mathcal{L}_{\text{flavor}} = z_{Q_L} Q_L \Psi_L^c + z_{t_R} t_R^c T_R^c + z_{b_R} b_R^c B_R^c$$

 Ψ_L, T_R, B_R = gauge-singlet fermion operators in strong sector (e.g. "baryon" operators)

$$m_t \propto z_{Q_L} z_{t_R}, \quad m_b \propto z_{Q_L} z_{b_R}$$

Unitarity $\Rightarrow [\Psi] > \frac{3}{2}$

 $[z] = \frac{5}{2} - [\Psi] \Rightarrow z$'s may be nearly marginal or relevant

⇒ no ETC-like flavor problem.

On the Lattice?

Requirements for a successful model:

- Composite fermion operators with quantum numbers of Q_L , t_R , b_R .
- Dimension of fermion operators $\lesssim \frac{5}{2}$.
- Composite fermion states

Examples:

 $Sp(4) \simeq SO(5)$ gauge theory with $4 \times 4 + 6 \times 5$ Barnard, Gherghetta, Ray [arXiv:1311.6562]

SU(4) gauge theory with $5 \times 6 + 3 \times (4 \oplus \bar{4})$

Ferretti, Karateev [arXiv:1312.5330]

Conclusions

Higgs compositeness requires some combination of dynamical accidents (tuning) special UV theories

This makes them hard to study on the lattice.

Most promising direction: PNGB Higgs models

Composite fermion operators

Top partners (baryons)

Effective potential from top loops?