A Model of Stealth Dark Matter

Graham Kribs

Based on 1402.6656, 1503.04203, 1503.04205 with LSD Collaboration

LLNL | Lattice for BSM Workshop | April 2015

Lattice Strong Dynamics Collaboration

- T. Appelquist, G. Fleming (Yale)
- E. Berkowitz, E. Rinaldi, C. Schroeder, P. Vranas (Livermore)
- R. Brower, C. Rebbi, E. Weinberg (Boston U)
- M. Buchoff (Washington)
- X. Jin, J. Osborn (Argonne)
- J. Kiskis (UC Davis)
- G. Kribs (Oregon)
- E. Neil (Colorado & Brookhaven)
- S. Sryitsyn (Brookhaven)
- D. Schaich (Syracuse)
- O. Witzel (Boston U & Edinburgh)

Dark Matter

Overwhelming evidence from CMB; galaxies; clusters; BAO; ...

Direct Detection Cross Section

Suppressed Cross Sections

 $\sigma_{
m nucleon}$

 $\sigma_{
m RADAR}$

4th Dirac neutrino

$$\sim 10^{-38} \text{ cm}^2$$

 $\sim 100 \text{ m}^2$

Quirky DM

 $\sim 10^{-43} \text{ cm}^2$

Falcon

$$\sim 10^{-2} \text{ m}^2$$

Stealth DM

$$\sim \left(\frac{200 \text{ GeV}}{m_B}\right)^6 \times 10^{-45} \text{ cm}^2$$

even smaller

Direct Detection Cross Section

Effective lower bound on composite DM with electrically charged constituents.

Stealth Dark Matter

 Scalar baryon of strongly-coupled SU(N_D), with N_D even [focus on SU(4)] and dark fermions transforming under EW group

- · All mass scales are technically natural; very roughly $100~{
 m GeV} \lesssim M_f \sim \Lambda_D \lesssim 100~{
 m TeV}$
- We use lattice simulations to calculate several non-perturbative observables (mass spectrum; interactions of DM with SM)
- Naturally "stealthy" with respect to direct detection; we determine the "ultimate" lower bound on composite DM with charged constituents
- LHC phenomenology completely different from weakly-coupled DM models

Lattice Gauge Theory Simulations

Ideal tool to calculate properties of theories with

$$M_f \sim \Lambda_D$$

in the fully non-perturbative regime. Joy of these calculations is that what we simulate is interesting "out of the box" without chiral extrapolations.

Relevant to DM: Thus far, we have accurate estimates of the spectrum, the "sigma term", and polarizability. Future work will nail down additional correlators (for S parameter), meson form factor, ...

Simulated with modified Chroma mainly on LLNL sequoia/vulcan. Quenched, unmodified Wilson fermions. Several volumes and lattice spacings.

Dynamics

Dark fermions

Dynamics

Dark fermions

Dark Fermions

Vector-like masses

$$M_{12}\epsilon_{ij}F_1^iF_2^j - M_{34}^uF_3^uF_4^d + M_{34}^dF_3^dF_4^u + h.c.,$$

EW breaking masses

$$y_{14}^{u}\epsilon_{ij}F_{1}^{i}H^{j}F_{4}^{d} + y_{14}^{d}F_{1} \cdot H^{\dagger}F_{4}^{u} + h.c.$$

$$-y_{23}^{d}\epsilon_{ij}F_{2}^{i}H^{j}F_{3}^{d} - y_{23}^{u}F_{2} \cdot H^{\dagger}F_{3}^{u}$$

$$+h.c.$$

Dark Flavor Symmetries

Under SU(4): $U(4) \times U(4)$

Weak gauging: $[SU(2) \times U(1)]^4$ (that contains $SU(2) \times U(1) Y$)

Vector-like masses: $SU(2)_L \times U(1)_Y \times U(1) \times U(1)$

Yukawas with Higgs: U(1)B

Dark baryon number automatic.

and very safe against cutoff scale violations of global symmetries e.g.

 $rac{qqqq H^{\dagger}H}{\Lambda_{
m cutoff}^4}$

[This is one reason to prefer SU(4) over SU(2).]

Dark Fermion Mass Spectrum

General

Custodial SU(2)

$$q = \pm 1/2$$

$$q = \pm 1/2$$

$$M_{12}, M_{34}^u, M_{34}^d$$
 y_{14}^u, y_{14}^d

$$y_{23}^u, y_{23}^d$$

$$M_{34}^u = M_{34}^d$$

$$y_{14}^u = y_{14}^d$$

$$y_{23}^u = y_{23}^d$$

Custodial SU(2)

- · Lightest baryon is a neutral complex scalar
 - (eliminates operators dependent on spin, e.g., dim-5 magnetic moment)
- Contributions to T parameter vanish
 (no need to make life more complicated)
- Weak isospin exactly zero
 (no Z coupling to dark matter; otherwise significant constraints)
- Dim-6 charge radius vanishes

(more stealthy w.r.t. direct detection; one less thing to calculate on lattice)

Two Distinct "Cases"

As we'll see, Higgs boson coupling to lightest dark fermions is proportional to

y Linear Case y^2 Quadratic Case

Approximately Symmetric / Vector-Like

Fermion mass matrices with custodial SU(2)

$$M^{u} = M^{d} = \begin{pmatrix} M \pm \Delta & y_{14}v/\sqrt{2} \\ y_{23}v/\sqrt{2} & M \mp \Delta \end{pmatrix}$$

Convenient to expand around the symmetric matrix limit

$$y_{14} = y + \epsilon_y$$
$$y_{23} = y - \epsilon_y$$

Then the axial current

$$j_{+,\text{axial}}^{\mu} \supset c_{\text{axial}} \overline{\Psi_1^u} \gamma^{\mu} \gamma_5 \Psi_1^d$$

becomes

$$c_{
m axial} = rac{\epsilon_y y v^2}{2M\sqrt{2\Delta^2 + y^2 v^2}}$$

$$\simeq rac{\epsilon_y v}{2M} imes \left\{ egin{array}{l} 1 & {
m Linear Case} \\ y v / (\sqrt{2}\Delta) & {
m Quadratic Case.} \end{array} \right.$$

Charged Meson Decay

Like pions in QCD

$$\langle 0|j_{\pm,\text{axial}}^{\mu}|\pi^{\pm}\rangle = if_{\pi}p^{\mu}$$

Lightest dark mesons decay through

$$\langle 0|j^{\mu}_{\pm,\text{axial}}|\Pi^{\pm}\rangle = if_{\Pi}\,p^{\mu}$$

The non-zero Yukawa couplings with $\epsilon_y \neq 0$ cause $j_{\pm, \text{axial}}^{\mu} \neq 0$

$$j_y \neq 0$$
 cause $j_{\pm, ext{axial}}^{\mu} \neq 0$

$$\frac{\Gamma(\Pi^+ \to f\overline{f}')}{\Gamma(\pi \to \mu^+ \nu_\mu)} \simeq \frac{c_{\rm axial}^2}{|V_{ud}|^2} \left(\frac{f_\Pi}{f_\pi}\right)^2 \left(\frac{m_f}{m_\mu}\right)^2 \left(\frac{m_\Pi}{m_\pi}\right) \qquad \text{(unlike "Vector-like Confinement")}$$
 Kilic, Okui, Sundrum; 0906.00

Kilic, Okui, Sundrum; 0906.0577

and so dark mesons decay much faster than QCD pions even with $c_{\rm axial} \ll 1$

Lower bound on meson mass ...

Charged pion production at LEP II

Using a crude recasting of bounds on staus, we find

$$m_{\Pi^{\pm}} > 86 \text{ GeV}$$

This is fairly robust to promptness/non-promptness of dark meson decay.

... becomes lower bound on the baryon mass

Within the range simulated on our lattices, we obtain

$$2.5 \lesssim \frac{m_B}{m_\Pi} \lesssim 3.8$$

S parameter

Peskin, Takeuchi (1990, 92)

Obviously $\Delta S \rightarrow 0$ as $(yv) \rightarrow 0$.

With custodial SU(2), approximate symmetric, and M₁ close to M₂

$$S \propto \int d^4x \, e^{-i\mathbf{q}\cdot\mathbf{x}} \langle j_3^{\mu}(x)j_Y^{\nu}(0)\rangle \simeq \frac{\epsilon_y^2 v^2}{4M^2} G_{LR}^{\mu\nu},$$

$$\Box G_{LR}^{\mu\nu} \equiv \langle \bar{\psi}^u \gamma^{\mu} P_L \psi^u \bar{\psi}^u \gamma^{\nu} P_R \psi^u \rangle |_{\text{connected}}$$

and thus can be easily suppressed below experimental limits.

[Vector-like masses for dark fermions crucial.]

Effective Higgs Coupling

The Higgs coupling to the lightest dark fermions

$$\mathcal{L} \supset y_{\Psi} h \overline{\Psi}_{1} \Psi_{1}$$

$$y_{\Psi} = \frac{y^{2} v}{M_{2} - M_{1}} + O(\epsilon_{y}) \simeq \begin{cases} \frac{y}{\sqrt{2}} & \text{Linear Case} \\ \frac{y^{2} v}{2\Delta} & \text{Quadratic Case.} \end{cases}$$

This leads to an effective Higgs coupling to the dark scalar baryon

$$g_B \simeq f_f^B \times \left\{ \begin{array}{l} y_{\rm eff} & {\rm Linear~Case} \\ y_{\rm eff}^2 \frac{v}{m_B} & {\rm Quadratic~Case} \end{array} \right.$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad$$

Extracted from lattice!

Direct Detection

Higgs exchange

EM polarizability

Stay tuned for Enrico's talk!

Abundance

Symmetric

If 2 -> 2 dominates the thermal annihilation rate and saturates unitarity, expect

Griest, Kamionkowski; 1990

$$m_B \sim 100 \text{ TeV}$$

Unfortunately, this is a hard calculation to do using lattice...

Asymmetric

e.g., through EW sphalerons

Barr, Chivukula, Farhi; 1990

$$n_D \sim n_B \left(\frac{yv}{m_B}\right)^2 \exp\left[-\frac{m_B}{T_{\rm sph}}\right]$$

IF EW breaking comparable to EW preserving masses, expect roughly

$$m_B \lesssim m_{\rm techni-B} \sim 1 \, {\rm TeV}$$

How much less depends on several factors...

Colliders

Collider searches dominated by light meson production and decay.

Missing energy signals largely absent!

Meson Decay Rates - A First Look

(Quirky) charged pion decay

(Vector-like) neutral meson decay

Fok, Kribs; 1106.3101

Astrophysical Signals - A First Look

Excited states of dark baryon that are nearby in mass

- fine structure
- hyperfine structure could be visible through γ -ray emission/absorption lines.

If some symmetric component, annihilation signals (into γ s) are extremely interesting. It could be that multibody final states are generic, e.g.

Cascade annilihition begun to be explored!

Elor, Rodd, Slatyer; 1503.01773

Summary and Future

- Stealth Dark Matter is a viable composite dark matter candidate composed of electrically charged constituents
- Qualitatively different direct, indirect, and collider signals are expected, illustrating the importance of "thinking outside the box"
- Meson production and decay is an extremely interesting LHC signal
 - calculating meson form factor f_Π from lattice is a high priority needed to make quantitative predictions for LHC
- S parameter from lattice would lead to bounds on EW breaking parameters (important!)
- · Indirect astrophysical signals (γ -rays) possible between excited states as well as annihilation of a symmetric component
- · Further investigation of abundance remains interesting (esp. asymmetric)