Synthesis and Phenomenology of large Nuclear Dark Matter (and Twin Higgs asides)

Robert Lasenby, University of Oxford

Work with E. Hardy, J. March-Russell, S. West arXiv 1411.3739 and arXiv 1504.05419 and J. March-Russell, I. García García (work in progress)

LLNL, April 23rd 2015

Large composite DM states

- Standard model: example of conserved baryon number, attractive interactions leading to multitude of large, stable bound states (nuclei)
- ▶ What if a similar thing happens for dark matter?
- Possibilities:
 - Number distribution over DM states
 - States with large spin
 - \blacktriangleright Structure on scales $\gg 1/m$ form factors in scattering, possibility of larger cross sections
 - Coherent enhancement of interactions
 - ▶ Inelastic processes fusions, fissions, excited states
 - ▶ 'Late-time' ($T \ll m$) synthesis can achieve very heavy ($\gtrsim 100\,\mathrm{TeV}$) DM from thermal freeze-out
- Earlier example of Q-balls non-topological solitons of scalar fields
- Related work: Krnjaic et al, Detmold et al, Wise et al

SM nuclei

SM nuclei without Coulomb repulsion

Dark nucleosynthesis

Free energy F = E - T S: large $T \Rightarrow$ everything dissociated small $T \Rightarrow$ large states favoured Assume asymmetric

Freeze-out of fusions

▶ Equal sizes: $A + A \rightarrow 2A$

$$\frac{\Gamma}{H} \sim \frac{\langle \sigma v \rangle n_A}{H} \sim \frac{\sigma_1 v_1 n_0}{H} A^{2/3} A^{-1/2} A^{-1} = \frac{\sigma_1 v_1 n_0}{H} A^{-5/6}$$

With $M_A = AM_1$,

$$\frac{\sigma_1 v_1 n_0}{H} \sim 2 \times 10^7 \left(\frac{1 \, \mathrm{GeV \, fm}^{-3}}{\rho_b} \right)^{2/3} \left(\frac{T}{1 \, \mathrm{MeV}} \right)^{3/2} \left(\frac{M_1}{1 \, \mathrm{GeV}} \right)^{-5/6}$$

so build-up to $A\sim5 imes10^8$ may be possible

▶ Small + large: $1 + A \rightarrow (1 + A)$. Rate for A of these is

$$\Gamma \sim \langle \sigma v \rangle n_k \frac{k}{A} \sim \sigma_1 v_1 n_0 \frac{1}{k^{1/2}} A^{2/3} A^{-1} = \frac{\sigma_1 v_1 n_0}{k^{1/2}} A^{-1/3}$$

Aggregation process

$$\frac{dn_k}{dt} + 3Hn_k = -\sum_{j>1} \langle \sigma v \rangle_{j,k} n_j n_k + \frac{1}{2} \sum_{i+j=k} \langle \sigma v \rangle_{i,j} n_i n_j$$

In terms of yields,
$$n_k(t)/s(t) \equiv Y_k(t) \equiv Y_0 y_k(w(t)), \quad (\sum y_k = 1)$$

where new 'time' \boldsymbol{w} is

$$\frac{dw}{dt} = Y_0 \sigma_1 s(t) f(T_d(t)) = n_0 \sigma_1 v_1$$

Then,

$$\frac{dy_k}{dw} = -y_k \sum_{i} R_{k,j} y_j + \frac{1}{2} \sum_{i+j=k} R_{i,j} y_i y_j$$

Scaling solution

$$\langle \sigma v \rangle_{i,j} \sim (\mathsf{radius}_i + \mathsf{radius}_j)^2 v_{\mathrm{rel}}$$

$$R_{i,j} = (i^{2/3} + j^{2/3})(i^{-1/2} + j^{-1/2})$$
, $R_{\lambda i,\lambda j} = \lambda^{1/6}R_{i,j}$

Number distributions at equally-spaced log w values, up to w = 75.

Scaling solution

▶ Shape stays the same, average size increases, $\bar{k}(w) \sim w^{6/5}$.

▶ Attractor solution, depending only on large-*k* behaviour of kernel — reach this form (eventually) independent of initial conditions, small-*k* kernel.

Real-time behaviour

$$T_d \propto 1/a \quad \Rightarrow \quad w(T) \simeq \frac{2}{3} \frac{n_0 \sigma_1 v_1}{H_0} \left(1 - \left(\frac{T}{T_0} \right)^{3/2} \right)$$

Most of build-up completes within one Hubble time.

Number distributions at half e-folding time intervals

What if there's a bottleneck at small numbers? (cf. SM)

- ▶ If $R_{i,j}$ for small i,j is low enough, and w_{max} is small enough, never reach scaling regime
- ► Counter-intuitively, this can result in building up *larger* nuclei, since small + large fusions are less velocity-suppressed
- ▶ For $1 + k \rightarrow (k+1)$ fusions,

0.001

200

400

$$\frac{dk}{dw} \simeq R_{1,k} y_1 \propto k^{2/3} \Rightarrow k \sim \left(\int dw \, y_1 \right)^3$$

$$0.004$$

$$0.003$$

$$0.002$$

Mass distribution at w = 25 for $R_{1,1} = 4, 10^{-4}, 10^{-5}$

600

800

1000

1200

1400

Power-law distribution

If we have a bath of small-number states throughout,

$$k \sim (w_{\mathrm{max}} - w_{\mathrm{inj}})^3 \Rightarrow -\frac{dw_{\mathrm{inj}}}{dk} \sim k^{-2/3} \Rightarrow y_k \sim k^{-2/3} \quad (k \text{ large})$$

Leads to power-law number distribution, qualitatively different from scaling solution

Number distribution at w = 25 for $R_{1,1} = 1, 10^{-1}, ..., 10^{-6}$

Summary: Synthesis of Nuclear Dark Matter

- Considered DM models with large bound states of strongly-interacting constituents
- Properties of sufficiently large 'dark nuclei' may obey geometrical scaling laws — this can determine number distribution from Big Bang Dark Nucleosynthesis
- ▶ If small-small fusions are fast enough, obtain universal scaling form of number distribution may have $A \gtrsim 10^8$
- With a bottleneck at small numbers, may build up even larger nuclei, with power-law number distribution
- In both cases, most of build-up completes within a Hubble time
- ► Have assumed that deviations from geometrical cross sections are eventually unimportant not necessarily the case!

Signatures of Nuclear Dark Matter

Most model-independent consequences:

- Soft scatterings coherently enhanced by A²
 - ▶ Number density $\propto 1/A$, so total direct detection rate $\propto A$
 - ► For given direct detection rate, production at colliders etc. suppressed
- Possibility of new momentum-dependent form factors in direct detection
- ► Low-energy collective excitations may allow coherently enhanced inelastic scattering
- Inelastic self-interactions between DM may lead to indirect detection signals, or modify distribution in halos / captured distribution in stars

Many other model-dependent possibilities still to be investigated

Twin Higgs

- ▶ Proposed solution to 'little hierarchy' problem stabilising the EW scale up to collider energies, $\Lambda \sim 5-10\,\mathrm{TeV}$.
- ▶ SM Higgs as PNGB of approximate SU(4) global symmetry, broken down to SU(3):

$$\mathcal{H} = (H_A, H_B)$$
 , $V = \lambda (|\mathcal{H}|^2 - f^2/2)^2$

- ▶ SU(4) explicitly broken by SM gauge and Yukawa couplings but, if A, B sectors related by approximate Z_2 , this gives us back accidental SU(4).
- Since observed light Higgs is SM-like, need to break Z₂ so that PNGB Higgs is mostly aligned with A,

$$f^2 = v_A^2 + v_B^2$$
 , $v_A^2 \ll v_B^2$

The Minimal ('Fraternal') Twin Higgs

- ▶ Idea: introduce only those *B*-sector states we need in order to have acceptable tuning up to $\Lambda \sim \mathcal{O}(10\,\mathrm{TeV})$.
- ▶ Main contributions from SM: top, $SU(2)_L$ gauge bosons, QCD (two loops).
- ▶ *B* sector:
 - \hat{t} with $\hat{y_t} \simeq y_t$.
 - ▶ $SU(2)'_L$ gauge group, $\hat{g_2} \simeq g_2$ (and so \hat{b} partner of \hat{t}).
 - \triangleright SU(3)' gauge group, roughly similar confinement scale.
- ▶ For anomaly cancellation, need to have \hat{b}_R and $(\hat{\tau}, \hat{\nu})$ lepton doublet.
- ▶ As long as $\hat{y_b}$, $\hat{y_\tau} \ll y_t$, no effect on tuning.

Fraternal Twin Higgs — Nuclear DM?

- Stable states: $\hat{B} = \hat{b}\hat{b}\hat{b}$ baryons, $\hat{\tau}$, $\hat{\nu}$
- ▶ In analogy to SM, \hat{B} asymmetry \Rightarrow asymmetric relic \hat{B} population.
- Possibility of \hat{B} bounds states? Nuclear matter? Synthesis problem: de-excitation from small-number fusions.
- ▶ Radiative capture via SU(2)'_L too slow. Introducing gauged U(1)'_Y, bound state formation of BB suppressed compared to non-identical fermions still appears to be too slow.
- Models with additional twin quark generation have a better chance of forming bound states.

Fraternal Twin Higgs — Cosmology

- \hat{B} nucleons as viable ADM
- ▶ Analogously to Lee-Weinberg bound, $\hat{\tau}$ abundance sub-DM requires either $\hat{m_{\tau}} \lesssim \text{eV}$, or $\hat{m_{\tau}} \gtrsim 70\,\text{GeV}$. For $m_{\hat{\tau}} \sim 70\,\text{GeV}$, have symmetric $\hat{\tau}$ DM
- ▶ Interesting effects related to SU(3)' phase transition:
 - ▶ If there are light hidden sector states (e.g. $\hat{\nu}$), does twin sector entropy end up there or in SM?

$$\hat{g}$$
 entropy $\Rightarrow \Delta \textit{N}_{\textit{eff}} \simeq 0.5$, $\hat{b} + \hat{g}$ entropy $\Rightarrow \Delta \textit{N}_{\textit{eff}} \simeq 1$

SU(3)' phenomenology

Dependence on glueball/meson spectrum, decay constants, transition matrix elements.

Stable glueball spectrum in pure SU(3) (Morningstar and Peardon)

If there are no light hidden sector states, Higgs mixing portal \Rightarrow possibility of (meta)-stable glueball states.

More SU(3)' phenomenology

- ▶ Pure-glue case appropriate to heavy quarks light quarks generally imply faster energy loss to hidden sector.
- ▶ Dynamics of phase transition: only heavy quarks ⇒ first order phase transition ⇒ entropy production, gravitational radiation.
- ▶ Effect of CP violation in twin sector (effect on SM EDMs small) e.g. $\hat{\theta}$ angle?
- Summary:
 - Fraternal twin Higgs provides motivated, 'minimal' example of strongly-coupled hidden sector
 - Demonstrates that assumptions about SM portal may have important consequences for cosmology of hidden sector phase transition, in some regions of parameter space

Freeze-out of dissociations

▶ Overall forward rate for $k + (A - k) \leftrightarrow A$ is

$$\langle \sigma v \rangle_{(k,A-k) \to A} n_k n_{A-k} - \Gamma_{A \to (k,A-k)} n_A$$

Fusions dominate over dissociations if

$$\frac{\langle \sigma v \rangle n_k n_{A-k}}{\Gamma n_A} \gg 1 \quad \Leftarrow \quad n_0 \Lambda^3 e^{\Delta B/T} \gg \text{(const. wrt } T\text{)}$$

- ▶ Since $n_0 \Lambda^3 \ll 1$, equality is at $T \ll \Delta B$
- ▶ Go from equality to $n_0 \Lambda^3 e^{\Delta B/T} \gg \text{const.}$ within small fraction of Hubble time.

Independence of initial conditions

Form factors in scattering

If $R_{\rm DM} > (\Delta p)^{-1}$, probe DM form factor Sharp boundary \Rightarrow spherical Bessel function form factor

$$F(q) = \frac{qR\cos(qR) - \sin(qR)}{(qR)^3} \sim \frac{1}{(qR)^2}$$

If skin depth etc of DM is smaller than SM nuclear scales, good approximation

e.g. form factor for nuclear charge distribution of $^{70}\mathrm{Ge}$.

Coherent enhancement

e.g. dim-6 interactions: $\sigma(q=0) \sim A^2 N^2 \frac{\mu^2}{\Lambda^4}$

Energy recoil spectrum for state with $R=50\,\mathrm{fm}$, $A=3\times10^6$, each constituent with $M_1=20\,\mathrm{GeV}$, $\sigma_n=2\times10^{-13}\,\mathrm{pb}$. Blue, red curves for $20\,\mathrm{GeV}$, $1\,\mathrm{TeV}$ WIMP ($\sigma_n=10^{-9}\,\mathrm{pb}$).

Effective form factor from distribution of sizes

Effective form factor similar to intermediate-mass mediator

dn/dk

Dependence on DM velocity distribution

Differential event rate:

$$rac{dR}{dE_R} \propto \left(\int_{|v| >
u_{
m min}} d^3 v rac{f(v)}{v}
ight) F_N(q)^2 F_D(q)^2$$

with

$$v_{min} \propto \sqrt{E_R}$$

Consequence: ignoring $F_N(q)$, $F_D(q)$, energy recoil spectrum is non-increasing with E_R .

Rising energy recoil spectrum

p-value CDFs for 30, 50, 100 events

Samples from recoil spectrum, $R_{\rm DM} = 50\,{\rm fm}$

Astrophysical consequences

▶ Self-interaction cross section & DM halo constraints?

$$\frac{\sigma_{AA}}{m_A} \simeq \frac{0.05\,\mathrm{barn}}{\mathrm{GeV}} A^{-1/3} \left(\frac{1\,\mathrm{GeV}}{M_1}\right)^{1/3} \left(\frac{1\,\mathrm{GeV}\,\mathrm{fm}^{-3}}{\rho_b}\right)^{2/3}$$

Cross sections saturate at geometrical value, so can be safe from elastic-scattering constraints

Proportion of DM mass density released by fusions:

$$\langle \sigma v \rangle n_A t_{\rm gal} \frac{\Delta BE}{M_A} \sim 10^{-3} A^{-2/3} \frac{\rho_{\rm DM}}{0.3\,{\rm GeV\,cm^{-3}}}$$

For comparison, annihilating symmetric DM has

$$\langle \sigma v \rangle n_X t_{\rm gal} \sim 3 \times 10^{-8} \left(\frac{100 \, {\rm MeV}}{m_X}\right) \left(\frac{\langle \sigma v \rangle_X}{\rm pb}\right)$$

Possibility of detectable annihilation-type signal from fusions: depends on SM injection channels etc.