

William Detmold, MIT

#### Dark nuclei

- Dark nuclear physics of QCD like theory with  $N_c$ =2 and  $N_f$ =2
- Based on two papers in collaboration with <u>Matthew McCullough</u> & <u>Andrew Pochinsky</u>
  - Dark Nuclei I: Cosmology and Indirect Detection —I 406.2276
  - Dark Nuclei II: Nuclear Spectroscopy in Two-Colour QCD —1406.4116
- Motivation
  - Dark matter model building:
    - Binding energy is a new scale
    - Interesting new phenomenology
  - Understand what is "nuclear physics" in a general context What generic feature, what is special?

#### Two-colour QCD

- Two-colour QCD with two flavours of fundamental fermions
  - Numerically feasible (simpler than QCD)
  - Emergent complexity: novel phenomenological aspects
- Single hadron aspects already considered in DM context [Lewis et al., Neil & Buckley, Hietanen et al.]
- Also lattice investigations of quenched  $N_c$ =4 QCD and other theories in this context
  - Sigma terms, polarisabilities,...

#### Symmetries of two-colour QCD

- Global flavour symmetry  $SU(2)_L \times SU(2)_R$  enlarges to SU(4)
  - Pseudo-reality of SU(2) left and right handed quarks can be combined into multiplets

$$\Psi = \begin{pmatrix} u_L \\ d_L \\ -i\sigma_2 C \bar{u}_R^\top \\ -i\sigma_2 C \bar{d}_R^\top \end{pmatrix} \qquad \Psi \xrightarrow{SU(4)} \exp \left( i \sum_{j=1}^{15} \theta_j T_j \right) \Psi$$

- Strong interactions result in condensate that spontaneously breaks the global symmetry:  $SU(4) \rightarrow Sp(4) \sim SO(5)$  [Peskin 1980]
- Numerical calculations have significant explicit symmetry breaking:  $m_u = m_d \sim \Lambda_{QC_2D}$

#### Spectrum

Simplest colour singlets

- Axial vector, scalar, tensor mesons + associated baryons
- Single hadron spectrum studied by [Hietanen et al. 1404.2794]
  - Pion multiplet are pseudoGoldstone bosons of  $\chi$ SB: SU(4) → Sp(4)
  - Rho stable for masses considered

#### Spectrum

- Colour singlets can combine
  - Two-, three-, ... particle scattering states
  - "Nuclei" for sufficiently attractive interactions—not a priori obvious
- Two "pions" combine to give 25 of states:  $5 \otimes 5 = 1 \oplus 10 \oplus 14$ 
  - $\blacksquare$  J=0 systems, contains B=2,1,0,-1,-2 states
- "pion"+ "rho": J=I systems with same flavour breakdown

$$\boldsymbol{D}^{\mu} = \begin{pmatrix} S_{+}^{\mu} & D_{2,0}^{\mu} & D_{1,0}^{\mu} & D_{1,-1}^{\mu} & D_{1,1}^{\mu} \\ \overline{D}_{2,0}^{\mu} & S_{-}^{\mu} & D_{-1,0}^{\mu} & D_{-1,-1}^{\mu} & D_{-1,1}^{\mu} \\ \overline{D}_{1,0}^{\mu} & \overline{D}_{-1,0}^{\mu} & S_{0}^{\mu} & D_{0,-1}^{\mu} & D_{0,1}^{\mu} \\ \overline{D}_{1,-1}^{\mu} & \overline{D}_{-1,-1}^{\mu} & \overline{D}_{0,-1}^{\mu} & S_{B}^{\mu} & D_{0,2}^{\mu} \\ \overline{D}_{1,1}^{\mu} & \overline{D}_{-1,1}^{\mu} & \overline{D}_{0,1}^{\mu} + \overline{D}_{0,2}^{\mu} & S_{\overline{B}}^{\mu} \end{pmatrix} \qquad \boldsymbol{D}_{11}^{\mu} = \operatorname{Tr}(\boldsymbol{D}^{\mu}) ,$$

$$\boldsymbol{D}_{10}^{\mu} = \frac{i}{2} \left( \boldsymbol{D}^{\mu} - \boldsymbol{D}^{\mu T} \right) ,$$

$$\boldsymbol{D}_{14}^{\mu} = \frac{1}{2} \left( \boldsymbol{D}^{\mu} + \boldsymbol{D}^{\mu T} \right) - \frac{1}{5} \operatorname{Tr}(\boldsymbol{D}^{\mu}) \mathbb{1}_{5}$$

■ Higher body systems: J=0, I, flavour =  $\underbrace{\qquad}_{n}$ , n=2,...,8

#### Simulations

|  |  | Wilson | gauge | and | ferr | nion | actions |
|--|--|--------|-------|-----|------|------|---------|
|--|--|--------|-------|-----|------|------|---------|

- HMC using modified chroma
- $\blacksquare$  4 lattice spacings ( $\beta$ ), 6 masses
  - Isospin symmetric
- 3 or 4 volumes per choice ( $\beta$ ,  $m_0$ )
- Long streams of configurations

| Label          | β   | $m_0$   | $L^3 \times T$     | $N_{ m traj}$ |
|----------------|-----|---------|--------------------|---------------|
| $\overline{A}$ | 1.8 | -1.0890 | $12^3 \times 72$   | 5,000         |
|                |     |         | $16^3 \times 72$   | 4,120         |
| •              |     |         | $20^3 \times 72$   | 3,250         |
| B              | 2.0 | -0.9490 | $12^{3} \times 48$ | 10,000        |
|                |     |         | $16^3 \times 48$   | 4,000         |
|                |     |         | $20^3 \times 48$   | 3,840         |
|                |     |         | $24^3 \times 48$   | 2,930         |
| $\overline{C}$ | 2.0 | -0.9200 | $12^{3} \times 48$ | 10,000        |
|                |     |         | $16^3 \times 48$   | 9,780         |
|                |     |         | $20^3 \times 48$   | 10,000        |
| $\overline{D}$ | 2.0 | -0.8500 | $12^{3} \times 48$ | 9,990         |
|                |     |         | $16^3 \times 48$   | 5,040         |
|                |     |         | $16^3 \times 72$   | 5,000         |
| 1              |     |         | $20^3 \times 48$   | 5,000         |
| )              |     |         | $24^3 \times 48$   | 5,050         |
| $\overline{E}$ | 2.1 | -0.7700 | $12^3 \times 72$   | 5,000         |
|                |     |         | $16^3 \times 72$   | 5,000         |
|                |     |         | $20^3 \times 72$   | 4,300         |
| $\overline{F}$ | 2.2 | -0.6000 | $12^3 \times 72$   | 5,000         |
|                |     |         | $16^3 \times 72$   | 5,000         |
|                |     |         | $20^3 \times 72$   | 5,000         |
|                |     |         | $24^3 \times 72$   | 5,070         |

#### Single hadron systems

Single hadron systems needed to set scales, characterise theory

| Ensemble       | β   | $m_0$   | $a m_q$      | $a f_{\pi}$    | $a m_{\pi}$   | $m_\pi/m_ ho$ |
|----------------|-----|---------|--------------|----------------|---------------|---------------|
| $\overline{A}$ | 1.8 | -1.0890 | 0.1299(1)(1) | 0.259(1)(1)    | 0.8281(8)(5)  | 0.844(1)(2)   |
| B              | 2.0 | -0.9490 | 0.0280(2)(4) | 0.101(3)(5)    | 0.347(6)(13)  | 0.663(9)(10)  |
| C              | 2.0 | -0.9200 | 0.0823(3)(3) | 0.159(2)(4)    | 0.609(3)(4)   | 0.826(3)(4)   |
| D              | 2.0 | -0.8500 | 0.1911(3)(2) | 0.2156(16)(11) | 0.9151(13)(6) | 0.910(2)(2)   |
| E              | 2.1 | -0.7700 | 0.1442(1)(1) | 0.1582(1)(1)   | 0.7450(9)(7)  | 0.904(2)(2)   |
| F              | 2.2 | -0.6000 | 0.2277(2)(1) | 0.1525(5)(7)   | 0.8805(7)(5)  | 0.951(3)(3)   |

Scale set by demanding  $f_{\pi}$ =246 GeV

@ fixed 
$$m_{\pi}/m_{\rho}$$
=0.9

| $\beta$ | $a [10^{-3} \text{ fm}]$ |
|---------|--------------------------|
| 1.8     | 0.35(2)                  |
| 2.0     | 0.24(1)                  |
| 2.1     | 0.19(1)                  |
| 2.2     | 0.14(2)                  |

 Single hadron volume effects are small for most ensembles



#### Multi-baryon spectrum

Extract spectrum of multi-baryon states from correlators

$$C_{nN}(t) = \left\langle 0 \left| \left( \sum_{\mathbf{x}} \mathcal{O}_{N}^{\mathcal{P}}(\mathbf{x}, t) \right)^{n} \left( \mathcal{O}_{N}^{\mathcal{S}\dagger}(\mathbf{x}_{0}, t_{0}) \right)^{n} \right| 0 \right\rangle$$

$$C_{nN,\Delta}^{(i,j)}(t) = \left\langle 0 \left| \left( \sum_{\mathbf{x}} \mathcal{O}_{N}^{\mathcal{P}}(\mathbf{x}, t) \right)^{n} \sum_{\mathbf{x}} \mathcal{O}_{\Delta_{j}}^{\mathcal{P}}(\mathbf{x}, t) \left( \mathcal{O}_{N}^{\mathcal{S}\dagger}(\mathbf{x}_{0}, t_{0}) \right)^{n} \mathcal{O}_{\Delta_{i}}^{\mathcal{S}\dagger}(\mathbf{x}_{0}, t_{0}) \right| 0 \right\rangle$$

$$\mathcal{O}_{\{N,\Delta_{i}\},s}(\mathbf{x}, t) = \psi_{u}^{\top}(\mathbf{x}, t) (-i\sigma_{2}) C\{1, \gamma_{i}\gamma_{5}\} \psi_{d}(\mathbf{x}, t)$$

- Local and smeared sources and sinks
- Need to be careful of thermal effects

$$C_{X,Y}^{s,s'}(t,T;\mathbf{0}) \stackrel{T \to \infty}{\longrightarrow} \sum_{n} Z_{X,s}^{(n)\dagger} Z_{Y,s'}^{(n)} e^{-E_n t}$$

Effective mass  $M(t) = \ln \left[ C(t) / C(t+1) \right] \stackrel{t \to \infty}{\longrightarrow} E_0$ 

#### Multi-baryon contractions

- SU(2) multi-baryon contractions equivalent to maximal isospin multimeson contractions
  - Clear from degeneracies but explicitly

$$S(y,x) = C^{\dagger}(-i\sigma_2)^{\dagger}S(x,y)^T(-i\sigma_2)C$$
  
$$S(y,x) = \gamma_5 S^{\dagger}(x,y)\gamma_5$$

first relation specific to  $N_c=2$ 

- Use algorithms from  $N_c$ =3 QCD [WD & Savage 2011,;WD, Orginos, Shi 2012]
- (n-1) $N\Delta$  ~ mixed pion-kaon contractions [WD & Smigielski 2011]



Ex:: three types of contractions for  $I=3 \pi \pi \pi$  and NNN

# Example effective mass plots



## Example effective mass shift plots







#### To be bound or not to be bound...

Bound/scattering state hypotheses (Lüscher):

$$H_1: \quad \Delta E_{\text{bound}}(L) = -\Delta E_{\infty} \left[ 1 + C \frac{e^{-\kappa L}}{L} \right],$$

$$H_2: \quad \Delta E_{\text{scatter}}(L) = \frac{2\pi A}{\mu L^3} \binom{n}{2} \left[ 1 - \left( \frac{A}{\pi L} \right) \mathcal{I} + \left( \frac{A}{\pi L} \right)^2 \left[ \mathcal{I}^2 + (2n - 5) \mathcal{J} \right] \right] + \frac{B}{L^6}$$

Assess support for each hypothesis using the <u>Bayes factor</u>

$$K = \frac{P(D|H_1)}{P(D|H_2)} = \frac{\int P(D|H_1, p_1)P(p_1|H_1)dp_1}{\int P(D|H_2, p_2)P(p_2|H_2)dp_2}$$

where 
$$\log P(D|H_i, p_i) = -\frac{1}{2} \sum_{j=1}^{N} \frac{\left[d_j - H_i(x_j; p_i)\right]^2}{\sigma_j^2}$$

and P(p<sub>i</sub>|H<sub>i</sub>) are broad prior distributions for convergence

If  $2 \ln[K] > 6$ : "strong evidence" of preference for  $H_1$  over  $H_2$  then ask what are the bounds on the binding energy

## Infinite volume extrapolations









#### Continuum extrapolations

Simple continuum limit extrapolation of binding momentum, γ



NB: physical scale set by demanding  $f_{\pi}$ =246 GeV (arbitrary)

### Continuum extrapolations

Simple continuum limit extrapolation of binding momentum, γ



2.0

#### Dark nuclei

- J=0 nuclei: very likely unbound (all positively shifted)
- J=I, strong evidence for bound states for B=2,3, 4(?) B=5,..,8 seem unbound
  - Bindings decrease with quark mass and increase towards continuum
  - Strength of binding is significant w.r.t. mass
- Nuclear states with other quantum #s may also be bound



## The ubiquity of nuclei?







 $N_c=3, m_{\pi}=400-800 \text{ MeV}$ 

#### The ubiquity of nuclei?

- Appears nuclei are rather generic and not an accident of parameters
- What are nuclei? e.g. shell model vs quark blobs
  - More detailed studies necessary
- How generic are layers of effective degrees of freedom?
  - nucleons → nuclei → alpha clusters ....

## Dark matter model building

- Extend strongly-interacting dark sector to talk minimally to SM
  - Simple extension: add scalar particle that kinematically mixes with Higgs

$$\mathcal{L} = \mathcal{L}_{\text{strong}} - \frac{\lambda}{4} \left( v_D - H_D^2 \right)^2 - \left( \kappa H_D (u_R^{\dagger} u_L + d_L^{\dagger} d_R) + h.c. \right) + \delta H_D^2 |H|^2$$

- Dark Higgs vev gives quark masses
- Kinematic mixing controlled by  $\delta$ : must be small  $\sim 10^{-3}$

| Field                                                  | Spin | $SU(2)_L$ | $SU(2)_R$ | $SU(2)_{QCD}$ |
|--------------------------------------------------------|------|-----------|-----------|---------------|
| $\left(egin{array}{c} u_L \ d_L \end{array} ight)$     | 1/2  |           | 1         |               |
| $\left(\begin{array}{c} u_R \\ d_R \end{array}\right)$ | 1/2  | 1         |           |               |
| $$ $H_D$ $$                                            | 0    | 1         | 1         | 1             |
| ${ m A}_{\mu}^a$                                       | 1    | 1         | 1         | adj           |

### Dark matter model building

- Hadronic theory: construct based on broken global symmetries  $SU(4) \rightarrow Sp(4) \sim SO(5)$ 
  - Consider only pions, rhos, "deuterons" (LQCD calculations provide motivation to consider deuterons)
  - Ignore compositeness!
  - Ignore larger baryon number states
- Interactions

$$\mathcal{L}_{Int} = A_{\pi} h_D \left( (\pi^0)^2 / 2 + \pi^+ \pi^- + \pi^B \pi^{\overline{B}} \right) + A_{\rho} h_D \left( (\rho^0)^2 / 2 + \rho^+ \rho^- + \rho^B \rho^{\overline{B}} \right)$$



## Cosmology

- Dark nucleosynthesis, dark capture processes modify early universe cosmology (both symmetric & asymmetric scenarios)
- Estimate cross sections and solve Boltzmann equations for comoving number densities

$$\begin{split} \frac{dY_{\pi^B}}{dx} &= -\lambda \bigg[ R_{\pi} \left( Y_{\pi^B} Y_{\pi^{\overline{B}}} - Y_{\pi^B}^{eq} Y_{\pi^{\overline{B}}}^{eq} \right) + R_{N} \left( Y_{\pi^B} Y_{D^{\overline{B}}} - \frac{Y_{\rho^{\overline{B}}}}{Y_{\rho^{\overline{B}}}^{eq}} Y_{\pi^B}^{eq} Y_{D^{\overline{B}}}^{eq} \right) \\ &- R_{N} \left( Y_{\rho^{\overline{B}}} Y_{D^B} - \frac{Y_{\pi^B}}{Y_{\pi^B}^{eq}} Y_{\rho^{\overline{B}}}^{eq} Y_{D^B}^{eq} \right) + R_{N} f(x) \left( Y_{\pi^B} Y_{\rho^B} - \frac{Y_{D^B}}{Y_{D^B}^{eq}} Y_{\pi^B}^{eq} Y_{\rho^B}^{eq} \right) \bigg] \\ \frac{dY_{\rho^B}}{dx} &= -\lambda \bigg[ R_{\rho} \left( Y_{\rho^B} Y_{\rho^{\overline{B}}} - Y_{\rho^B}^{eq} Y_{\rho^{\overline{B}}}^{eq} \right) + R_{N} \left( Y_{\rho^B} Y_{D^{\overline{B}}} - \frac{Y_{\pi^{\overline{B}}}}{Y_{\pi^{\overline{B}}}^{eq}} Y_{\rho^B}^{eq} Y_{D^B}^{eq} \right) \\ &- R_{N} \left( Y_{\pi^{\overline{B}}} Y_{D^B} - \frac{Y_{\rho^B}}{Y_{\rho^B}^{eq}} Y_{\pi^{\overline{B}}}^{eq} Y_{D^B}^{eq} \right) + R_{N} f(x) \left( Y_{\pi^B} Y_{\rho^B} - \frac{Y_{D^B}}{Y_{\rho^B}^{eq}} Y_{\pi^B}^{eq} Y_{\rho^B}^{eq} \right) \bigg] \\ \frac{dY_{D^B}}{dx} &= -\lambda \bigg[ R_{D} \left( Y_{D^B} Y_{D^{\overline{B}}} - Y_{D^B}^{eq} Y_{D^{\overline{B}}}^{eq} \right) - R_{N} f(x) \left( Y_{\pi^B} Y_{\rho^B} - \frac{Y_{D^B}}{Y_{D^B}^{eq}} Y_{\pi^B}^{eq} Y_{\rho^B}^{eq} \right) \\ &+ R_{N} \left( \left( Y_{\pi^{\overline{B}}} + Y_{\rho^{\overline{B}}} \right) Y_{D^B} - \left( \frac{Y_{\rho^B}}{Y_{\rho^B}^{eq}} Y_{\pi^B}^{eq} + \frac{Y_{\pi^B}}{Y_{\pi^B}^{eq}} Y_{\rho^B}^{eq} \right) Y_{D^B}^{eq} \right) \bigg] \end{split}$$

Range of possible compositions of relic density

# Cosmology



### Indirect detection signals

Presence of nuclear binding energies: new scale for phenomenology is significantly different than  $\Lambda_{\text{QC}_2\text{D}}$ 

| Signature | Collider | Direct Detection | Annihilation | Nucleosynthesis | Capture |
|-----------|----------|------------------|--------------|-----------------|---------|
| Sym-DM    | M, 2M    | M, 2M            | M, 2M        | $B_D \ll M$     | M       |
| Asym-DM   | M, 2M    | M,2M             |              | $B_D \ll M$     |         |

- For symmetric DM, additional scale/process may lead to signals at multiple different energy scales with identical spatial morphology
- For asymmetric DM scenarios (only dark baryon number carrying states remain) nucleosynthesis allows indirect detection signals

### Dark matter model building

- Extend strongly-interacting dark sector to talk minimally to SM
  - Simple extension: add scalar particle that kinematically mixes with Higgs

$$\mathcal{L} = \mathcal{L}_{\text{strong}} - \frac{\lambda}{4} \left( v_D - H_D^2 \right)^2 - \left( \kappa H_D (u_R^{\dagger} u_L + d_L^{\dagger} d_R) + h.c. \right) + \delta H_D^2 |H|^2$$

- Dark Higgs vev gives quark masses
- Kinematic mixing controlled by  $\delta$ : must be small ~  $10^{-3}$
- Hadronic theory: consider only pions, rhos, "deuterons" (LQCD calculations provide motivation to consider deuterons)
- Interactions





#### Compact Objects

- Significant modifications to physics of astrophysical bodies
  - Dark matter gravitationally captured after scattering on visible matter
  - Helioseismology and neutron star lifetimes strongly modified – strongly constrains asymmetric DM models
- Very rich phenomenology!
  - Liberation of binding energy may allow ejection of dark matter
- Star develops a co-located dark nuclear process site





#### Summary

- Two-flavour, two-colour QCD has a complex spectrum exhibiting the analogues of nuclei
  - Ubiquity of nuclei
- Composite dark matter is a natural scenario to consider
  - Nuclear binding provides a scale that is small relative to the QCD scale in a natural way
  - Predicts a range of different phenomenology that beyond what is possible in simpler models

fin

## Infinite volume extrapolations



# Dispersion relation

- Consider boosted hadrons
- Lattice artifacts break relativity

$$E_H(p) = \sqrt{M_H^2 + c_H^2 p^2}$$

■ Speed of light ≠ I

| Ensemble       | $c_{\pi}$ | $c_{ ho}$ |
|----------------|-----------|-----------|
| $\overline{A}$ | 0.93(1)   | 0.87(4)   |
| B              | 0.92(5)   | 0.97(5)   |
| C              | 0.99(2)   | 0.94(1)   |
| D              | 0.94(2)   | 0.92(3)   |
| E              | 0.95(1)   | 0.93(3)   |
| F              | 0.96(2)   | 0.94(1)   |
|                |           |           |



### Continuum extrapolations

Simple continuum limit extrapolation of binding momentum, γ





## Sigma terms

- DM may interact via scalar exchange (Higgs portal)
  - Depends on QCD <u>nuclear</u> sigma terms
  - For composite dark matter, depends on sigma terms of dark hadrons/nuclei
- Nuclear sigma terms
  - Particle physicists: A x proton sigma term
  - Reality: non-trivial deviations from 2-body physics
     Calculate from QCD/EFT [Beane et al. 2013]
- Dark sigma terms: accessible from Feynman-Hellman theorem

$$f_q^{(H)} = \frac{m_q}{M_H} \frac{\partial M_H}{\partial m_q}$$



### Sigma terms

Estimate via partially-quenched calculation for single hadrons



Surprisingly naive dimensional analysis works

#### Correlations

 Different normalisation choices change results a little because of correlations

