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Technicolor and Extended Technicolor

• QCD like dynamics can trigger the Electroweak symmetry breaking


• Techni pion act as NG mode of Higgs


• give mass to W and Z bosons


• SM fermion masses are given through ETC


• Tension:


• FCNC must be suppressed


• sizable mf needs to be generated
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We investigate chiral and conformal properties of the lattice QCD with eight flavors (Nf ¼ 8) through
meson spectrum using the highly improved staggered quark (HISQ) action. We also compare our results

with those of Nf ¼ 12 and Nf ¼ 4 which we study on the same systematics. We find that the decay

constant F! of the pseudoscalar meson ‘‘pion’’ ! is nonzero, with its mass M! consistent with zero, both

in the chiral limit extrapolation of the chiral perturbation theory. We also measure other quantities which

we find are in accord with the ! data results: The " meson mass is consistent with nonzero in the chiral

limit, and so is the chiral condensate, with its value neatly coinciding with that from the Gell-Mann-

Oakes-Renner relation in the chiral limit. Thus, our data for the Nf ¼ 8 QCD are consistent with the

spontaneously broken chiral symmetry. Remarkably enough, while the Nf ¼ 8 data near the chiral limit

are well described by the chiral perturbation theory, those for the relatively large fermion bare mass mf

away from the chiral limit actually exhibit a finite-size hyperscaling relation, suggesting a large anomalous

dimension #m " 1. This implies that there exists a remnant of the infrared conformality, and suggests that a

typical technicolor (‘‘one-family model’’) as modeled by the Nf ¼ 8 QCD can be a walking technicolor

theory having an approximate scale invariance with large anomalous dimension #m " 1.

DOI: 10.1103/PhysRevD.87.094511 PACS numbers: 11.15.Ha, 11.30.Rd, 12.60.Nz

I. INTRODUCTION

The origin of mass is the most urgent issue of the particle
physics today. Although the LHC has discovered a
125 GeV boson roughly consistent with the standard model
(SM) Higgs boson, there still remain many unsolved prob-
lems with the SM, which would require physics beyond the
SM. One of the candidates for the theory beyond the SM
towards that problem is the walking technicolor (WTC) [1]
having a large anomalous dimension #m ’ 1 and approxi-
mate scale invariance due to the almost nonrunning
(‘‘walking’’) coupling [2], which is based on the scale-
invariant gauge dynamics [ladder Schwinger-Dyson (SD)
equation [3,4]]. Actually, WTC predicts [1,5] a light scalar
Higgs-like composite, technidilaton, a pseudo-Nambu-
Goldstone boson of the spontaneously broken approximate
scale symmetry, which may be identified with the 125 GeV
boson [6].

The walking behavior can in fact be realized in the
‘‘large Nf QCD,’’ QCD with large number of (massless)
flavors Nf, which possesses the Caswell-Banks-Zaks
(CBZ) infrared fixed point (IRFP) [7], $# ¼ $#ðNc; NfÞ&
ð<1Þ of the two-loop beta function, for N#

fð’ 8Þ<Nf <

NðAFÞ
f ¼ 11Nc=2ð¼ 16:5Þ in such a way that $# ! 0 as

Nf ! NðAFÞ
f , where NðAFÞ

f is the maximum number to

keep the asymptotic freedom. Because of the CBZ IRFP
there exists an approximate scale invariance $ð%Þ ’ $# in

the infrared region 0<%<!QCD (‘‘infrared conformal-
ity’’), while such a scale symmetry is lost for the ultraviolet
region %>!QCD where the coupling runs as in a usual
asymptotically free theory.1 When Nf is near N

#
f so that $#

is strong enough to trigger the spontaneous chiral symme-
try breaking (S&SB), the exact IRFP would actually be
washed out by the dynamical generation of a quark mass
mD ! 0 through a continuous phase transition (‘‘confor-
mal phase transition’’ [9]), mD ¼ 0 ð$# < $cr, or Nf >

Ncr
f ð>N#

fÞÞ to mD ! 0 ($# > $cr, or ðN#
f<ÞNf < Ncr

f ), in

such a way (‘‘Miransky scaling’’ [4]) that mD "!QCD '
exp ð(!=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$# ( $cr

p Þ ) !QCD for $# ’ $cr (Nf ’ Ncr
f ),

where $cr is the critical coupling for the S&SB and Ncr
f

the critical number of flavors such that $#ðNc; N
cr
f Þ ¼ $cr.

The critical number Ncr
f was estimated as Ncr

f ’ 4Nc ’ 12

[8] by comparing the two-loop value of the CBZ IRFP with
the critical coupling of the ladder SD equation analysis [3]:
$#ðNc;N

cr
f Þ¼$crð¼!=ð3C2Þ¼!=4Þ. Now, for Nfð<Ncr

f Þ
very close to Ncr

f , the dynamical mass mDð! 0Þ could be

much smaller than the intrinsic scale mD ) !QCD, in

1The intrinsic scale !QCD at two-loop level is defined as usual
by a renormalization-group-invariant scale parameter !QCD ¼
% ' exp ð(R

$ð%Þ d$
'ð$ÞÞ such that

d!QCD

d% ¼ 0, where 'ð$Þ *
@$=@ðln%Þ is the two-loop beta function instead of the one-
loop one [8].
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mate scale invariance due to the almost nonrunning
(‘‘walking’’) coupling [2], which is based on the scale-
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try breaking (S&SB), the exact IRFP would actually be
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f was estimated as Ncr
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the critical coupling of the ladder SD equation analysis [3]:
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f Þ
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f , the dynamical mass mDð! 0Þ could be

much smaller than the intrinsic scale mD ) !QCD, in
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a crude analysis: Fπ/Mπ vs Mπ 
 leads to a likely scenario

Nf=8

• chiral symmetry• conformality

mf # trj. Mπ Mρ Fπ

0.04 700 0.3024(16) 0.3777(47) 0.0633(6)

0.05 600 0.3513(12) 0.4332(19) 0.0738(8)

0.06 500 0.3994(15) 0.4888(14) 0.0840(7)

0.08 500 0.4875(9) 0.5965(10) 0.1017(6)

0.1 500 0.5670(7) 0.6927(14) 0.1167(3)

0.12 500 0.6460(7) 0.7899(22) 0.1328(4)

0.16 400 0.7877(6) 0.9549(14) 0.1586(5)

0.2 400 0.9193(6) 1.1049(22) 0.1821(6)

TABLE V. The results of the spectra on V =

303 × 40 at β = 3.7. {tab:5}

mf # trj. Mπ Mρ Fπ

0.05 600 0.3163(27) 0.3693(49) 0.0633(9)

0.06 600 0.3634(15) 0.4336(22) 0.0729(4)

0.08 600 0.4508(12) 0.5311(21) 0.0898(7)

0.1 600 0.5227(9) 0.6174(21) 0.1017(7)

0.12 600 0.5966(10) 0.7027(22) 0.1149(7)

0.16 500 0.7308(8) 0.8519(12) 0.1380(7)

0.2 500 0.8568(6) 0.9921(6) 0.1585(8)

TABLE VI. The results of the spectra on

V = 303 × 40 at β = 4. {tab:6}
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FIG. 2. Dimension-less ratio Fπ/Mπ as a function of Mπ for Nf = 4 at β = 3.7. Due to the

spontaneous chiral symmetry breaking, the ratio diverges in the chiral limit. {fig:ratio_mf_nf4}

dependence.

Similar observation can be made for the other ratio Mρ/Mπ shown in the right panel of

Fig. 3. Here, the flattening is observed for β = 3.7 again, however the range is wider than

Fπ/Mπ. In this case β = 4 shows the flattening, also. The difference of the constant is made

possible due to a discretization effect.

In the following sections, further detailed study using these data are performed. From

the observation here, we note that the only the smaller mass data would qualify the hyper

scaling test if there is any, if only a leading mass dependence is taken into account. Further,

11

Nf=4

• chiral symmetry
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Fπ vs mf

Nf=12
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a crude analysis: Fπ/Mπ vs Mπ 
 leads to a likely scenario

Nf=8

• chiral symmetry• conformality

mf # trj. Mπ Mρ Fπ

0.04 700 0.3024(16) 0.3777(47) 0.0633(6)

0.05 600 0.3513(12) 0.4332(19) 0.0738(8)

0.06 500 0.3994(15) 0.4888(14) 0.0840(7)

0.08 500 0.4875(9) 0.5965(10) 0.1017(6)

0.1 500 0.5670(7) 0.6927(14) 0.1167(3)

0.12 500 0.6460(7) 0.7899(22) 0.1328(4)

0.16 400 0.7877(6) 0.9549(14) 0.1586(5)

0.2 400 0.9193(6) 1.1049(22) 0.1821(6)

TABLE V. The results of the spectra on V =

303 × 40 at β = 3.7. {tab:5}

mf # trj. Mπ Mρ Fπ

0.05 600 0.3163(27) 0.3693(49) 0.0633(9)

0.06 600 0.3634(15) 0.4336(22) 0.0729(4)

0.08 600 0.4508(12) 0.5311(21) 0.0898(7)

0.1 600 0.5227(9) 0.6174(21) 0.1017(7)

0.12 600 0.5966(10) 0.7027(22) 0.1149(7)

0.16 500 0.7308(8) 0.8519(12) 0.1380(7)

0.2 500 0.8568(6) 0.9921(6) 0.1585(8)

TABLE VI. The results of the spectra on

V = 303 × 40 at β = 4. {tab:6}
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a M

π
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F π
/Μ
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FIG. 2. Dimension-less ratio Fπ/Mπ as a function of Mπ for Nf = 4 at β = 3.7. Due to the

spontaneous chiral symmetry breaking, the ratio diverges in the chiral limit. {fig:ratio_mf_nf4}

dependence.

Similar observation can be made for the other ratio Mρ/Mπ shown in the right panel of

Fig. 3. Here, the flattening is observed for β = 3.7 again, however the range is wider than

Fπ/Mπ. In this case β = 4 shows the flattening, also. The difference of the constant is made

possible due to a discretization effect.

In the following sections, further detailed study using these data are performed. From

the observation here, we note that the only the smaller mass data would qualify the hyper

scaling test if there is any, if only a leading mass dependence is taken into account. Further,
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• chiral symmetry
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even with this case, 
if the Fπ/Mπ(Mπ→0)<∞, constant with conformal



Nf=8: conformal vs chiral symm. br.

• various quantities are tested:


• Fπ, Mπ, Mρ, MN, MN*, Ma0, Ma1, Mb1, chiral condensate


• Finite size scaling (conformal) with some types of mass correction


• just confirm what found for Fπ scaling


!

• results can be interpreted either way:  conformal or chiral symm. br.


• but, scaling exponents between quantities are not completely consistent


• this property maybe a clue of walking technicolor theory


• further getting close to chiral limit will unfold the nature of this theory



In case of SχSB: 
!

spectrum at chiral limit 
↓ 

(with model structure) 
↓ 

prediction to compare with experiment 
!

following is “preliminary” results



mesons: ρ, a0, a1, b1
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baryons: N, N*

0 0.01 0.02 0.03 0.04 0.05
m

f

0

0.2

0.4

0.6

0.8

1

M
N

 a
n
d
 M

N
*

M
N

M
N*



mass ratio compared with real-life QCD

• moving toward “parity doubling” from smaller Nf to Nf=8


• consistent with LSD collab. with domain-wall fermions 
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Nf=8 composite spectrum

• NLO chiral log correction for F: dominant systematic error


• Nd depends on the model


• e.g. one family model: Nd=4 → Mρ ~ 1.2 TeV

D. Estimate of log correction

The logarithmic correction in the chiral fits are estimated in the same way in our previous

work [4]. The logarithmic mf dependence is predicted by the next leading order (NLO)

ChPT for both the M2
π/mf and Fπ [12], whose formulae are given by

M2
π

mf
= 2B

(

1 +
x

Nf
log(x) + c3x

)

(8)

Fπ = F

(

1−
Nf x

2
log(x) + c4x

)

, (9)

where x = 4Bmf/(4πF )2, and B,F, c3 and c4 are the low energy constants. Our data do not

have such logarithmic dependences even in the lightest mf region as shown in the previous

subsections.

The size of the logarithmic correction in F and B is estimated by matching the quadratic

fit results to the NLO ChPT at mf such that X = 1, with X defined in Eq. (4), where F

should read the re-estimated one in this analysis. The details of the analysis is explained in

Appendix C. The correction reduces F by about 30% from the quadratic fit.

The results for F and and the chiral condensate at the chiral limit in this work are

F = 0.0212(12)(+49
−70), (10)

⟨ψψ⟩
∣

∣

mf→0
= 0.00022(4)(+22

−11), (11)

where the first and second errors are statistical and systematic ones, respectively. For

both the quantities, the central values come from the quadratic fit with the fit range of

0.012 ≤ mf ≤ 0.03, and the upper systematic error is estimated from the difference of the

central values between the quadratic fit and the linear fit with 0.012 ≤ mf ≤ 0.02. The

lower systematic errors come from the logarithmic correction in NLO ChPT.

It would be useful to estimate physical quantities in units of F , because in the technicolor

model the F is related to the weak scale,

√

NdF/
√
2 = 246 GeV, (12)

where Nd is the number of the fermion weak doublets as 1 ≤ Nd ≤ Nf/2. From our result,

the ratio Mρ/F in the chiral limit is given as

Mρ

F/
√
2
= 10.1(0.6)(+5.0

−2.5). (13)
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The ratios for all the hadron masses, tabulated in Table VII to F in the chiral limit are

summarized in Table X, where the systematic error comes from the one in F .

ρ a0 a1 b1 N N∗

10.1(0.6)(+5.0
−2.5) 10.8(1.1)(+5.3

−2.7) 14.4(1.7)(+7.1
−3.6) 13.3(2.1)(+6.6

−3.3) 14.3(0.9)(+7.0
−3.5) 18.1(1.6)(+8.9

−4.5)

TABLE X. Ratios of
√
2MH/F with H = ρ, a0, a1, b1, N, and N∗. The first and second errors are

statistical and systematic errors.
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Nf=8 composite spectrum

• NLO chiral log correction for F: dominant systematic error


• Nd depends on the model


• e.g. one family model: Nd=4 → Mρ ~ 1.2 TeV

D. Estimate of log correction
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The ratios for all the hadron masses, tabulated in Table VII to F in the chiral limit are

summarized in Table X, where the systematic error comes from the one in F .
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• NLO chiral log correction for F: dominant systematic error


• Nd depends on the model


• e.g. one family model: Nd=4 → Mρ ~ 1.2 TeV
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The ratios for all the hadron masses, tabulated in Table VII to F in the chiral limit are
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flavor singlet scalar : Higgs channel

• flavor singlet: known as a difficult problem in lattice QCD


• variance reduction method & high stat.


• σ as light as π

➡similar to Nf=12 [LatKMI 2013]


• clearly lighter than ρ

➡ far from heavy quark limit
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FIG. 15. Connected −C(t) and disconnected correlators 2D(t) for L=30, mf = 0.02.
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FIG. 16. Effective scalar mass mσ from correlators with the projection for L = 30, mf = 0.02.

even t. Another projection C−(t) ≡ 2C(t)− C(t+ 1)− C(t− 1) at even t is also defined to

maximize the opposite parity contribution πSC .

A typical result for D(t) and C(t) is shown in Fig. 15. In the figure, D(t) behaves as a

smooth function of t in contrast to C(t), which has a oscillating behavior. This result means

the taste symmetry breaking effect on AπSC
(t) and AπSC

is negligible in the parameter region

we simulate. The effective masses of 2D(t) − C(t), D(t), and C+(t) are shown in Fig. 16.

Since the correlator of 2D+(t)− C+(t) at large t is dominated by 2D(t), the effective mass

of the 2D(t) − C(t) at large t becomes consistent with the one obtained from D(t). It

turns out to become an advantage of using D(t) in extracting mσ, since the plateau of D(t)

appears at earlier t than that of the 2D+(t) − C+(t), which enables to determine mσ with

better accuracy. This earlier plateau happens to appear in the mass parameter we simulate,

which might be caused by a reasonable cancellation between the contributions of Aa0(t) and

excited state of σ. It is also shown that the effective masses of D(t) as well as 2D(t)−C(t)
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FIG. 17. Fermion mass dependence of the mass of the flavor-singlet scalarmσ. Other hadron masses

of NG pion mπ and vector meson mass are also shown. Outer error represents the statistical and

systematic uncertainties added in quadrature, while inner error is only statistical.

are smaller than that of mπ as plotted in the figure. Due to the smallness of mσ compared

to other hadron masses, the exponential damping of D(t) is milder than we expect in usual

QCD. It helps preventing the rapid degradation of the sigma-to-noise ratio.

We fit D(t) with assumption of a single scalar propagating. The fit range is [tmin, tmax] =

[6, 11] for all the simulation parameters, where we find a effective mass plateau. As a

systematic study, we take the fixed fit range for all the simulation parameters. In order to

estimate a systematic uncertainty coming from the fixed fitting range effect, we also fit with

later t region, with the same number of the data points, as shown in Fig.16. We quote the fit

result with fixed t range as a central value, and estimate a systematic error as the difference

of two values obtained by two fit ranges. All the results are tabulated in Table.XI. It should

be noted that, in somewhat smaller mass region, an additional effective mass plateau seems

to appear at later t region, whose mass is below the one obtained in the region at small t.

In later time region, however the effective masses are not stable with larger error in D(t),

so that it requires more accurate data for better identification of the ground state mass.

We find that the results with two different fit ranges are consistent each other except for

L = 36,mf = 0.015, where it has a second plateau. All results for the effective mass and

fits in other parameters are summarized in Appendix.XX.
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trial chiral extrapolation for Nf=8 SU(3) mσ 
[LatKMI NEW: update from PRD2014]

• though it is too far, so far


• 2 ways:


• naive linear     mσ=c0+c1mf


• dilaton ChPT  mσ2=d0+d1mπ2                     
(Matsuzaki-Yamawaki 2013) 


• differ only at higher order


• possibility to have ~125GeV Higgs


• F/√2=123 GeV one-family model


• lighter mass data needed!

c.f. mσ⋍F/√2 → c0⋍0.014 || d0⋍0.0002

c0 =   0.063(30)(+4-142)
d0 =  −0.0028(98)(+36-313 )!

d1 =    0.89(26)(+75-12 )!
c.f. d1~1 (holographic: Fσ~√NfF)!
       [Matsuzaki & Yamawaki 2012] 
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FIG. 18. Pion mass dependence of the mass of the flavor-singlet scalar mσ. Other hadron masses

of NG pion mπ and vector meson mass are also shown. Outer error represents the statistical and

systematic uncertainties added in quadrature, while inner error is only statistical. Results of the

chiral extrapolation by the DChPT are plotted by the solid line and full circle. Linear fit in mf is

also plotted by the dashed curve and full square.

mσ = c0m
1/(1+γ)
f , also works in the smaller mass region due to sizable error. The conformal

fit gives a χ2/dof = 0.60, and γ = 0.47(33)( 9
80). Accordingly, an interesting property that

both the fits of the (D)ChPT and hyperscaling with a large mass anomalous dimension

work in an appropriate mass region can be seen in mσ as well as other hadron spectra. It is

quite different from the usual QCD and could be a signal of the walking gauge theory. An

important future direction is to obtain a precise value of mσ in the chiral limit which will be

useful to study if this theory really possesses a desired walking behavior, and reproduce the

Higgs boson with 125 GeV mass. For this purpose, we need more and more data at lighter

fermion mass region with larger volumes.
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Other low energy constant: on-going project

• Vector / Axial vector decay constant ↔ by-product of S parameter meas.


• dilaton decay constant


• mainly by Ohki 



Other low energy constant: on-going project

• Vector / Axial vector decay constant ↔ by-product of S parameter meas.


• dilaton decay constant


• mainly by Ohki (from July)

If you are interested, 
please contact / discuss with him



S parameter: calculation method

• calculated through vacuum polarization function of flavor non-singlet currents


• lattice calculation suffers from power divergence without exact chiral symm.


• so far, overlap and domain-wall fermion methods are reported


• Overlap


• Nf=2 SU(3) [JLQCD Shintani et al PRL 2008]


• Domain-wall


• Nf=2+1 SU(3) [RBC/UKQCD Boyle et al PRD 2010]


• Staggered   (utilizing exact non-singlet symmetry due to multiple fields) 


• Nf=4n system setup on HISQ [Aoki (LatKMI) Lattice 2013]



S parameter of QCD with Nf fundamental fermions 
[LSD, PRL 2011 & PRD 2014]

• domain wall fermions with Nf=2,6,8


• one doublet has EW charge →


• Nf=6


• decreases as mf enters chiral regime


• turns up after chiral log sets in


• low value of S possible for unabsorbed 
massive pions


• Nf=8


• similar trend as Nf=6, but not conclusive
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Eq. (19) is the same fitting function we used in Ref. [13];
subsequent studies [58, 59] have since provided more sys-
tematic support for using such rational functions to fit
the Q

2-dependence of vacuum polarization functions.
Finally, the subtraction of �SSM in Eq. (18) removes

from the spectrum the three NGBs eaten by the W and
Z, and sets S = 0 for the standard model with Higgs
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we take

�SSM =
1

4

Z 1

4M2
P

ds

s

"
1�

✓
1� M

2
V 0

s

◆3

⇥(s�M

2
V 0)

#

� 1

12⇡
log

✓
M

2
V 0

M

2
H

◆
. (21)

The first term in Eq. (21) would be appropriate if MH

were comparable to the TeV-scale vector meson mass
MV 0; the second term corrects this for the physical
MH = 125 GeV [66].

Computing S for fixed m from Eqs. 18 and 21, employ-
ing the thermalization cuts and jackknife blocks listed in
Table I, produces the 8-flavor results shown in Figure 11.
This figure also includes the Nf = 2 and 6 results pre-
viously published in Ref. [13], which we update to use
MH = 125 GeV rather than MH ⇠ 1000 GeV. As in pre-
vious sections, we plot S vs. M2

P /M
2
V 0 in order to provide

a more direct comparison between the three di↵erent the-
ories.

The S parameter is only well defined in the chiral limit
M

2
P /M

2
V 0 ! 0. However, chiral symmetry breaking with

Nf light but massive flavors produces N2
f �1 PNGBs. To

obtain the phenomenological S parameter, we must con-
sider a chiral limit in which only three of these PNGBs
become exactly massless NGBs to be identified with the
longitudinal components of the W and Z. The other
N

2
f � 4 PNGBs must remain massive enough to have

evaded experimental observation. (These PNGBs are
all pseudoscalars, not to be identified with the 125 GeV
Higgs, which comes from the flavor-singlet scalar spec-
trum that we have not yet investigated.)

For Nf = 2 this requirement simply reduces to the
linear M

2
P /M

2
V 0 ! 0 extrapolation shown in Figure 11,

which produces the non-perturbative result S = 0.42(2),
in agreement with the scaled-up QCD value S ⇡ 0.43
for MH = 125 GeV. When Nf > 2, keeping all the
fermion masses degenerate in the chiral limit would give
rise to additional massless NGBs that make a loga-
rithmically divergent contribution to S, proportional to
log

�
M

2
V 0/M

2
P

�
. The blue band in Figure 11 fits the three

Nf = 6 data points with the smallest M

2
P /M

2
V 0 . 1 to

the corresponding chiral form [55]. In a realistic con-
text, the N2

f �4 PNGBs remain massive, due to standard

FIG. 11. Electroweak S parameter with MH = 125 GeV, for
Nf = 2, 6 and 8 with ND = 1 fermion doublet assigned chiral
electroweak couplings in Eq. (18). Our results for Nf = 2 and
6 were previously published in Refs. [13, 55].

model and other interactions, which break this degener-
acy.
For Nf = 8, we cannot access M2

P /M
2
V 0 < 1 on 323⇥64

lattice volumes, making this sort of chiral fit unreason-
able. Even so, in Figure 11 we can observe the beginning
of a similar reduction in our 8-flavor results for S. The
Edinburgh-style plot in Figure 5 suggests that these re-
sults should be safe from finite-volume distortions. (The
lightest Nf = 2 and Nf = 6 points in Figure 11 use
mf = 0.005 and are omitted from Figure 5; finite-volume
e↵ects may be significant for this 6-flavor point.) Because
Nf = 8 is closer to the conformal window, we would ex-
pect this reduction to end up more significant than that
for Nf = 6 at smaller M

2
P /M

2
V 0, but this cannot be de-

termined from our current lattice results.

B. Vector and axial-vector parity doubling

The expected decrease in the S parameter for systems
near the conformal window is related to the onset of par-
ity doubling between the vector and axial-vector chan-
nels. This can be seen in Eq. (20), which follows from
the dispersion relation

⇧V�A(Q
2) =

Q
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Z 1
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⇡


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upon approximating each spectral function R(s) by a sin-
gle pole,

RV (s) ⇡ 12⇡2
F

2
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2
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2
A�(s�M

2
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Parity doubling in this context amounts to the statement
that RV (s) ⇡ RA(s), so that ⇧0

V�A(0) ⇡ 0.
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Eq. (19) is the same fitting function we used in Ref. [13];
subsequent studies [58, 59] have since provided more sys-
tematic support for using such rational functions to fit
the Q

2-dependence of vacuum polarization functions.
Finally, the subtraction of �SSM in Eq. (18) removes

from the spectrum the three NGBs eaten by the W and
Z, and sets S = 0 for the standard model with Higgs
mass MH = 125 GeV. Since we have not yet carried
out the computationally demanding calculation of the
(flavor-singlet scalar) Higgs mass in our lattice studies,
we take
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The first term in Eq. (21) would be appropriate if MH

were comparable to the TeV-scale vector meson mass
MV 0; the second term corrects this for the physical
MH = 125 GeV [66].

Computing S for fixed m from Eqs. 18 and 21, employ-
ing the thermalization cuts and jackknife blocks listed in
Table I, produces the 8-flavor results shown in Figure 11.
This figure also includes the Nf = 2 and 6 results pre-
viously published in Ref. [13], which we update to use
MH = 125 GeV rather than MH ⇠ 1000 GeV. As in pre-
vious sections, we plot S vs. M2

P /M
2
V 0 in order to provide

a more direct comparison between the three di↵erent the-
ories.

The S parameter is only well defined in the chiral limit
M

2
P /M

2
V 0 ! 0. However, chiral symmetry breaking with

Nf light but massive flavors produces N2
f �1 PNGBs. To

obtain the phenomenological S parameter, we must con-
sider a chiral limit in which only three of these PNGBs
become exactly massless NGBs to be identified with the
longitudinal components of the W and Z. The other
N

2
f � 4 PNGBs must remain massive enough to have

evaded experimental observation. (These PNGBs are
all pseudoscalars, not to be identified with the 125 GeV
Higgs, which comes from the flavor-singlet scalar spec-
trum that we have not yet investigated.)

For Nf = 2 this requirement simply reduces to the
linear M

2
P /M

2
V 0 ! 0 extrapolation shown in Figure 11,

which produces the non-perturbative result S = 0.42(2),
in agreement with the scaled-up QCD value S ⇡ 0.43
for MH = 125 GeV. When Nf > 2, keeping all the
fermion masses degenerate in the chiral limit would give
rise to additional massless NGBs that make a loga-
rithmically divergent contribution to S, proportional to
log

�
M

2
V 0/M

2
P

�
. The blue band in Figure 11 fits the three

Nf = 6 data points with the smallest M

2
P /M

2
V 0 . 1 to

the corresponding chiral form [55]. In a realistic con-
text, the N2

f �4 PNGBs remain massive, due to standard

FIG. 11. Electroweak S parameter with MH = 125 GeV, for
Nf = 2, 6 and 8 with ND = 1 fermion doublet assigned chiral
electroweak couplings in Eq. (18). Our results for Nf = 2 and
6 were previously published in Refs. [13, 55].

model and other interactions, which break this degener-
acy.
For Nf = 8, we cannot access M2

P /M
2
V 0 < 1 on 323⇥64

lattice volumes, making this sort of chiral fit unreason-
able. Even so, in Figure 11 we can observe the beginning
of a similar reduction in our 8-flavor results for S. The
Edinburgh-style plot in Figure 5 suggests that these re-
sults should be safe from finite-volume distortions. (The
lightest Nf = 2 and Nf = 6 points in Figure 11 use
mf = 0.005 and are omitted from Figure 5; finite-volume
e↵ects may be significant for this 6-flavor point.) Because
Nf = 8 is closer to the conformal window, we would ex-
pect this reduction to end up more significant than that
for Nf = 6 at smaller M

2
P /M

2
V 0, but this cannot be de-

termined from our current lattice results.

B. Vector and axial-vector parity doubling

The expected decrease in the S parameter for systems
near the conformal window is related to the onset of par-
ity doubling between the vector and axial-vector chan-
nels. This can be seen in Eq. (20), which follows from
the dispersion relation
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upon approximating each spectral function R(s) by a sin-
gle pole,
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Parity doubling in this context amounts to the statement
that RV (s) ⇡ RA(s), so that ⇧0

V�A(0) ⇡ 0.
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Introduction.—In a recent Letter [1], we studied the
chiral properties of an SUð3Þ gauge theory with Nf mass-
less Dirac fermions in the fundamental representation as
Nf is increased from 2 to 6. We noted that the Nf ¼ 2
calculations are in good agreement with measured QCD
values, and that the Nf ¼ 6 results indicate substantial
enhancement of the chiral condensate. Here we extend
the study, presenting results for the electroweak S parame-
ter and for the lightest vector and axial resonances.

Lattice calculations of SUðNÞ gauge theories [2–6] sug-
gest infrared conformality exists for Nf values from the
onset of asymptotic freedom down to a critical value Nc

f. A

fixed point (whose value depends on the defining scheme)
governs the infrared behavior. Below this ‘‘conformal
window,’’ chiral symmetry breaking and confinement set
in. Even for Nf < Nc

f studies using continuum gap equa-

tions suggest that there can remain an approximate infrared
fixed point provided that 0<Nc

f $ Nf % Nc
f. The scale of

chiral symmetry breaking is small compared to some high
scale where asymptotic freedom sets in, and the fixed point
approximately governs the theory from the breaking scale
to this higher scale. This ‘‘walking’’ behavior leads to
chiral-condensate enhancement, which can address the
problem of obtaining large enough quark and lepton
masses in technicolor theories.

It has been suggested [7–9] that walking theories could
address another problem by leading to smaller values of the
electroweak S parameter. The value of S is related to the
spectrum of vector and axial resonances in the theory. As in
Ref. [1], we start with Nf ¼ 2, allowing us to check the
reliability of our methods by comparison with QCD phe-
nomenology. We then consider the Nf ¼ 6 theory in which

the coupling runs more slowly than in the Nf ¼ 2 theory,
but which is not yet truly walking. Proceeding carefully
toward Nc

f is prudent since the eventual appearance of

widely separated scales associated with walking is chal-
lenging for lattice methods.
We first compute the S parameter from the defining

current correlators, and then present results for the
lowest-lying vector and axial masses and decay constants.
We discuss our results along with the related Weinberg
spectral function sum rules, and then summarize.
S parameter.—The S parameter can be defined in terms

of the vector and axial current-correlation functions with,
by convention, the would-be Nambu-Goldstone-boson
(NGB) contribution to the standard-model (SM) radiative
corrections removed. With Nf=2 massless electroweak
doublets, it can be written as [10]

S ¼ 4!ðNf=2Þ½!0
VVð0Þ $!0

AAð0Þ' $ "SSM

¼ 1

3!

Z 1

0

ds

s

!
ðNf=2Þ½RVðsÞ $ RAðsÞ'

$ 1

4

"
1$

#
1$m2

H

s

$
3
"ðs$m2

HÞ
%&
; (1)

where !VVðQ2Þ and !AAðQ2Þ are the transverse correla-
tion functions for a single electroweak doublet, RðsÞ (
12! Im!0ðsÞ, and mH is the reference Higgs boson mass.
The presence of RVðsÞ $ RAðsÞ in the spectral integral
suggests that S could decrease if the resonance spectrum
becomes more parity doubled with increasing Nf.
For Nf ¼ 2, there are 3 NGBs, with the I3 ¼ )1 pair

leading to RVðsÞ ! 1=4 as s ! 0. [RAðsÞ ! 0.] The SM
subtraction removes the resultant infrared divergence.

PRL 106, 231601 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
10 JUNE 2011

0031-9007=11=106(23)=231601(4) 231601-1 ! 2011 American Physical Society

suggesting a suppression of S atNf¼6. This interpretation
requires care, however, since the extrapolationM2

P/m!0
is dominated by chiral logs for both Nf ¼ 2 and 6.

S-parameter results.—The S parameter [Eq. (1)] is sim-
ply the correlator slope multiplied by the number of elec-
troweak doublets, with the SM subtraction. We estimate
the SM subtraction by evaluating the !SSM integral in
Eq. (1) with an infrared cutoff at s ¼ 4M2

P, and taking
mH ¼ MV0. For the case 2MP <MV0,

!SSMðMPÞ ¼
1

12!

!
11

6
þ log

"
M2

V0

4M2
P

#$
: (3)

We use values forMP andMV0 determined in Ref. [1]. The
choice mH ¼ MV0 corresponds roughly to a 1 TeV value
for the reference Higgs boson mass.

In Fig. 3, we plot S % 4!ðNf=2Þ"0
V&Að0Þ & !SSM. For

Nf ¼ 2, the results are consistent with previous calcula-
tions [12,13]. The SM subtraction at Nf ¼ 2 is small,
reaching a value '0:04 for the lowest solid mass point,
corresponding to mf ¼ 0:010. A smooth extrapolation to
M2

P ¼ 0 is expected since the LO chiral logs eventually
appearing in"0

V&Að0Þ are canceled by the SM subtraction,
Eq. (3). We include a linear fit to the three solid points with
M2

P=M
2
V0 < 1. In this range, where chiral perturbation

theory should begin to be applicable, there can also be a
next-to-leading-order (NLO) term of the form M2

P logM
2
P,

but it is not visible in our data so we disregard it. The fit,
with error band, is shown in Fig. 3, giving Sm¼0 ¼ 0:32ð5Þ,
consistent with the value obtained using scaled-up QCD
data [10].

The Nf ¼ 6 results for S are also shown in Fig. 3. The
SM subtraction is again very small. For the higher mass
points, S is consistent with a value obtained by simply
scaling up the Nf ¼ 2 points by a factor of 3. The value of
S at the lower mass points, where M2

P=M
2
V0 < 1, begins to

drop well below its value at the higher mass points. This
trend has appeared at Nf ¼ 6 even though 6 ( Nc

f. AsM
2
P

is decreased further at Nf ¼ 6, S as computed here will
eventually turn up since the SM subtraction leaves the

chiral-log contribution ð1=12!Þ½N2
f=4& 1* logM&2

P . To es-

timate where this turn up sets in, we include a simple fit of
the form S ¼ Aþ BM2

P þ ð2=3!Þ logðM2
V0=M

2
PÞ to the

three points with M2
P=M

2
V0 < 1, disregarding a possible

M2
P logM

2
P term. This fit, with error band, is also shown

in Fig. 3. In a realistic context, the PNGBs receive mass
from SM and other interactions not included here, and
these masses provide the infrared cutoff in the logs.
Resonance spectrum.—A question of general interest for

an SUðNÞ gauge theory is the form of the resonance
spectrum as Nf is increased toward Nc

f. A trend toward

parity doubling, for example, would provide a striking
contrast with a QCD-like theory. If the gauge theory plays
a role in electroweak symmetry breaking, then this trend
could be associated with a diminished S parameter.
We have so far computed the masses, MV and MA, and

decay constants, FV and FA, of the lowest-lying vector and
axial resonances. We plot the masses along with their ratio
in Fig. 4. Since the solid data points (MPL> 4) are linear
with a small slope for each case except MA at Nf¼6, and
the NLO term in chiral perturbation theory is linear in
M2

P / m, we include a linear fit to all the solid points.
For Nf ¼ 2,MV extrapolates to 0.215(3) and for Nf ¼ 6 it
extrapolates to 0.209(3). The equality within errors of these
two masses in lattice units was arranged by the choice of
the lattice coupling in each case.
For Nf ¼ 2, the extrapolated value of MA=MV ¼

1:476ð40Þ is roughly consistent with the experimental re-
sult of 1.585(52) [14]. The Nf ¼ 6 data points for MA do
not yet allow a simple fit and extrapolation, However, they
do indicate a substantial decrease in MA=MV for
M2

P=M
2
V0 < 1, the same range for which the S parameter

begins to drop for Nf ¼ 6, indicating that the decrease in S
is indeed associated with a trend toward parity doubling.

FIG. 3 (color online). S parameter for Nf ¼ 2 (red triangles)
and Nf ¼ 6 (blue circles). For each of the solid points,
MPL> 4. The bands correspond to fits explained in the text.

FIG. 4 (color online). Axial and vector masses, MA and MV ,
and their ratio. Linear fits to the solid points (MPL> 4), with the
extrapolated values and errors shown to the left.
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• parity doubling observed in the spectrum is consistent with the decrease
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Eq. (19) is the same fitting function we used in Ref. [13];
subsequent studies [58, 59] have since provided more sys-
tematic support for using such rational functions to fit
the Q

2-dependence of vacuum polarization functions.
Finally, the subtraction of �SSM in Eq. (18) removes

from the spectrum the three NGBs eaten by the W and
Z, and sets S = 0 for the standard model with Higgs
mass MH = 125 GeV. Since we have not yet carried
out the computationally demanding calculation of the
(flavor-singlet scalar) Higgs mass in our lattice studies,
we take

�SSM =
1
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The first term in Eq. (21) would be appropriate if MH

were comparable to the TeV-scale vector meson mass
MV 0; the second term corrects this for the physical
MH = 125 GeV [66].

Computing S for fixed m from Eqs. 18 and 21, employ-
ing the thermalization cuts and jackknife blocks listed in
Table I, produces the 8-flavor results shown in Figure 11.
This figure also includes the Nf = 2 and 6 results pre-
viously published in Ref. [13], which we update to use
MH = 125 GeV rather than MH ⇠ 1000 GeV. As in pre-
vious sections, we plot S vs. M2

P /M
2
V 0 in order to provide

a more direct comparison between the three di↵erent the-
ories.

The S parameter is only well defined in the chiral limit
M

2
P /M

2
V 0 ! 0. However, chiral symmetry breaking with

Nf light but massive flavors produces N2
f �1 PNGBs. To

obtain the phenomenological S parameter, we must con-
sider a chiral limit in which only three of these PNGBs
become exactly massless NGBs to be identified with the
longitudinal components of the W and Z. The other
N

2
f � 4 PNGBs must remain massive enough to have

evaded experimental observation. (These PNGBs are
all pseudoscalars, not to be identified with the 125 GeV
Higgs, which comes from the flavor-singlet scalar spec-
trum that we have not yet investigated.)

For Nf = 2 this requirement simply reduces to the
linear M

2
P /M

2
V 0 ! 0 extrapolation shown in Figure 11,

which produces the non-perturbative result S = 0.42(2),
in agreement with the scaled-up QCD value S ⇡ 0.43
for MH = 125 GeV. When Nf > 2, keeping all the
fermion masses degenerate in the chiral limit would give
rise to additional massless NGBs that make a loga-
rithmically divergent contribution to S, proportional to
log

�
M

2
V 0/M

2
P

�
. The blue band in Figure 11 fits the three

Nf = 6 data points with the smallest M

2
P /M

2
V 0 . 1 to

the corresponding chiral form [55]. In a realistic con-
text, the N2

f �4 PNGBs remain massive, due to standard

FIG. 11. Electroweak S parameter with MH = 125 GeV, for
Nf = 2, 6 and 8 with ND = 1 fermion doublet assigned chiral
electroweak couplings in Eq. (18). Our results for Nf = 2 and
6 were previously published in Refs. [13, 55].

model and other interactions, which break this degener-
acy.
For Nf = 8, we cannot access M2

P /M
2
V 0 < 1 on 323⇥64

lattice volumes, making this sort of chiral fit unreason-
able. Even so, in Figure 11 we can observe the beginning
of a similar reduction in our 8-flavor results for S. The
Edinburgh-style plot in Figure 5 suggests that these re-
sults should be safe from finite-volume distortions. (The
lightest Nf = 2 and Nf = 6 points in Figure 11 use
mf = 0.005 and are omitted from Figure 5; finite-volume
e↵ects may be significant for this 6-flavor point.) Because
Nf = 8 is closer to the conformal window, we would ex-
pect this reduction to end up more significant than that
for Nf = 6 at smaller M

2
P /M

2
V 0, but this cannot be de-

termined from our current lattice results.

B. Vector and axial-vector parity doubling

The expected decrease in the S parameter for systems
near the conformal window is related to the onset of par-
ity doubling between the vector and axial-vector chan-
nels. This can be seen in Eq. (20), which follows from
the dispersion relation
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upon approximating each spectral function R(s) by a sin-
gle pole,

RV (s) ⇡ 12⇡2
F

2
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2
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F

2
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2
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(23)

Parity doubling in this context amounts to the statement
that RV (s) ⇡ RA(s), so that ⇧0

V�A(0) ⇡ 0.
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Introduction.—In a recent Letter [1], we studied the
chiral properties of an SUð3Þ gauge theory with Nf mass-
less Dirac fermions in the fundamental representation as
Nf is increased from 2 to 6. We noted that the Nf ¼ 2
calculations are in good agreement with measured QCD
values, and that the Nf ¼ 6 results indicate substantial
enhancement of the chiral condensate. Here we extend
the study, presenting results for the electroweak S parame-
ter and for the lightest vector and axial resonances.

Lattice calculations of SUðNÞ gauge theories [2–6] sug-
gest infrared conformality exists for Nf values from the
onset of asymptotic freedom down to a critical value Nc

f. A

fixed point (whose value depends on the defining scheme)
governs the infrared behavior. Below this ‘‘conformal
window,’’ chiral symmetry breaking and confinement set
in. Even for Nf < Nc

f studies using continuum gap equa-

tions suggest that there can remain an approximate infrared
fixed point provided that 0<Nc

f $ Nf % Nc
f. The scale of

chiral symmetry breaking is small compared to some high
scale where asymptotic freedom sets in, and the fixed point
approximately governs the theory from the breaking scale
to this higher scale. This ‘‘walking’’ behavior leads to
chiral-condensate enhancement, which can address the
problem of obtaining large enough quark and lepton
masses in technicolor theories.

It has been suggested [7–9] that walking theories could
address another problem by leading to smaller values of the
electroweak S parameter. The value of S is related to the
spectrum of vector and axial resonances in the theory. As in
Ref. [1], we start with Nf ¼ 2, allowing us to check the
reliability of our methods by comparison with QCD phe-
nomenology. We then consider the Nf ¼ 6 theory in which

the coupling runs more slowly than in the Nf ¼ 2 theory,
but which is not yet truly walking. Proceeding carefully
toward Nc

f is prudent since the eventual appearance of

widely separated scales associated with walking is chal-
lenging for lattice methods.
We first compute the S parameter from the defining

current correlators, and then present results for the
lowest-lying vector and axial masses and decay constants.
We discuss our results along with the related Weinberg
spectral function sum rules, and then summarize.
S parameter.—The S parameter can be defined in terms

of the vector and axial current-correlation functions with,
by convention, the would-be Nambu-Goldstone-boson
(NGB) contribution to the standard-model (SM) radiative
corrections removed. With Nf=2 massless electroweak
doublets, it can be written as [10]

S ¼ 4!ðNf=2Þ½!0
VVð0Þ $!0

AAð0Þ' $ "SSM

¼ 1
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Z 1

0

ds

s

!
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$ 1
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where !VVðQ2Þ and !AAðQ2Þ are the transverse correla-
tion functions for a single electroweak doublet, RðsÞ (
12! Im!0ðsÞ, and mH is the reference Higgs boson mass.
The presence of RVðsÞ $ RAðsÞ in the spectral integral
suggests that S could decrease if the resonance spectrum
becomes more parity doubled with increasing Nf.
For Nf ¼ 2, there are 3 NGBs, with the I3 ¼ )1 pair

leading to RVðsÞ ! 1=4 as s ! 0. [RAðsÞ ! 0.] The SM
subtraction removes the resultant infrared divergence.
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suggesting a suppression of S atNf¼6. This interpretation
requires care, however, since the extrapolationM2

P/m!0
is dominated by chiral logs for both Nf ¼ 2 and 6.

S-parameter results.—The S parameter [Eq. (1)] is sim-
ply the correlator slope multiplied by the number of elec-
troweak doublets, with the SM subtraction. We estimate
the SM subtraction by evaluating the !SSM integral in
Eq. (1) with an infrared cutoff at s ¼ 4M2

P, and taking
mH ¼ MV0. For the case 2MP <MV0,

!SSMðMPÞ ¼
1

12!

!
11

6
þ log

"
M2

V0

4M2
P

#$
: (3)

We use values forMP andMV0 determined in Ref. [1]. The
choice mH ¼ MV0 corresponds roughly to a 1 TeV value
for the reference Higgs boson mass.

In Fig. 3, we plot S % 4!ðNf=2Þ"0
V&Að0Þ & !SSM. For

Nf ¼ 2, the results are consistent with previous calcula-
tions [12,13]. The SM subtraction at Nf ¼ 2 is small,
reaching a value '0:04 for the lowest solid mass point,
corresponding to mf ¼ 0:010. A smooth extrapolation to
M2

P ¼ 0 is expected since the LO chiral logs eventually
appearing in"0

V&Að0Þ are canceled by the SM subtraction,
Eq. (3). We include a linear fit to the three solid points with
M2

P=M
2
V0 < 1. In this range, where chiral perturbation

theory should begin to be applicable, there can also be a
next-to-leading-order (NLO) term of the form M2

P logM
2
P,

but it is not visible in our data so we disregard it. The fit,
with error band, is shown in Fig. 3, giving Sm¼0 ¼ 0:32ð5Þ,
consistent with the value obtained using scaled-up QCD
data [10].

The Nf ¼ 6 results for S are also shown in Fig. 3. The
SM subtraction is again very small. For the higher mass
points, S is consistent with a value obtained by simply
scaling up the Nf ¼ 2 points by a factor of 3. The value of
S at the lower mass points, where M2

P=M
2
V0 < 1, begins to

drop well below its value at the higher mass points. This
trend has appeared at Nf ¼ 6 even though 6 ( Nc

f. AsM
2
P

is decreased further at Nf ¼ 6, S as computed here will
eventually turn up since the SM subtraction leaves the

chiral-log contribution ð1=12!Þ½N2
f=4& 1* logM&2

P . To es-

timate where this turn up sets in, we include a simple fit of
the form S ¼ Aþ BM2

P þ ð2=3!Þ logðM2
V0=M

2
PÞ to the

three points with M2
P=M

2
V0 < 1, disregarding a possible

M2
P logM

2
P term. This fit, with error band, is also shown

in Fig. 3. In a realistic context, the PNGBs receive mass
from SM and other interactions not included here, and
these masses provide the infrared cutoff in the logs.
Resonance spectrum.—A question of general interest for

an SUðNÞ gauge theory is the form of the resonance
spectrum as Nf is increased toward Nc

f. A trend toward

parity doubling, for example, would provide a striking
contrast with a QCD-like theory. If the gauge theory plays
a role in electroweak symmetry breaking, then this trend
could be associated with a diminished S parameter.
We have so far computed the masses, MV and MA, and

decay constants, FV and FA, of the lowest-lying vector and
axial resonances. We plot the masses along with their ratio
in Fig. 4. Since the solid data points (MPL> 4) are linear
with a small slope for each case except MA at Nf¼6, and
the NLO term in chiral perturbation theory is linear in
M2

P / m, we include a linear fit to all the solid points.
For Nf ¼ 2,MV extrapolates to 0.215(3) and for Nf ¼ 6 it
extrapolates to 0.209(3). The equality within errors of these
two masses in lattice units was arranged by the choice of
the lattice coupling in each case.
For Nf ¼ 2, the extrapolated value of MA=MV ¼

1:476ð40Þ is roughly consistent with the experimental re-
sult of 1.585(52) [14]. The Nf ¼ 6 data points for MA do
not yet allow a simple fit and extrapolation, However, they
do indicate a substantial decrease in MA=MV for
M2

P=M
2
V0 < 1, the same range for which the S parameter

begins to drop for Nf ¼ 6, indicating that the decrease in S
is indeed associated with a trend toward parity doubling.

FIG. 3 (color online). S parameter for Nf ¼ 2 (red triangles)
and Nf ¼ 6 (blue circles). For each of the solid points,
MPL> 4. The bands correspond to fits explained in the text.

FIG. 4 (color online). Axial and vector masses, MA and MV ,
and their ratio. Linear fits to the solid points (MPL> 4), with the
extrapolated values and errors shown to the left.
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currents and Ward-Takahashi identities: HISQ

• obtained through local variation on the action under the exact symmetries


• one link and Naik term (Asqtad,  HISQ) → one link and three link terms


• 　


• 　


• 　


• 　

�µhV(1,2)
µ (x) O(0)i = h�V O(0)i

V(1,2)
µ (x) = V

(1,2)
µ (x) + three link terms

A(1,2)
µ (x) = A

(1,2)
µ (x) + three link terms

�µhA(1,2)
µ (x) O(0)i = 2mf hP (1,2) O(0)i+ h�AO(0)i



• Conserved - OneLink  correlators


!

!

　                     (                                                                                   → HVPF)                                                          


!

!

!

• OneLink - OneLink used for sanity check of renormalization

current-current correlation function for VPF: HISQ

hV(1,2)
µ (x) V (2,1)

⌫ (0)i

�
µ

hV(1,2)
µ

(x) V (2,1)
⌫

(0)i = (�
x,0 � �

x,0+⌫̂

) hṼ (1,2)
⌫

(0)i

hA(1,2)
µ (x) A(2,1)

⌫ (0)i

�
µ

hA(1,2)
µ

(x) A(2,1)
⌫

(0)i = 2m
f

hP (1,2)(x) A(2,1)
⌫

(0)i+ (�
x,0 � �

x,0+⌫̂

) hṼ (1,2)
⌫

(0)i

hV
µ

(x) V
⌫

(0)isub = hV
µ

(x) V
⌫

(0)i � �

µ,⌫

�

x,0hṼ⌫

(0)i

hV (1,2)
µ (x) V (2,1)

⌫ (0)i hA(1,2)
µ (x) A(2,1)

⌫ (0)i



• sink: conserved,    src: 1 link:   src op needs renormalization


!

• 　


• 　


•                                     for mf→0   (chiral symmetry)

renormalization

hA(1,2)
µ (x) A(2,1)

⌫ (0)i

Aµ = ZAAµ ZA =
hA4(t)P (0)i
hA4(t)P (0)i

Vµ = ZV Vµ

ZV = ZA



non-perturbative calculation of ZA

• Nf=8,  HISQ,  β=3.8, L3xT (L/T=4/3)


• choice of link in one link current:  HISQ w/o Naik   (so to mimic conserved)
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non-perturbative calculation of ZA

• Nf=8,  HISQ,  β=3.8, L3xT (L/T=4/3)


• choice of link in one link current:  HISQ w/o Naik   (so to mimic conserved)
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V-A vacuum polarization function (transverse)
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sanity check of non-perturbative renormalization

• non-perturbative renormalization is working, especially well at low q2
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V-A vacuum polarization function: Pade(1,2) fit
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V-A vacuum polarization function: Pade(1,2) fit
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V-A vacuum polarization function: close-up

• finite volume effect on Π(q2) and Π’(0) ?
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S(mf): TC contribution per EW doublet (preliminary)

• finite size effect, somehow large, observed


• 8%↓ @ mf=0.02; L=42→36             c.f. pion mass: 0.04%↓ (zero consistent)
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S(mπ2): TC contribution per EW doublet (preliminary)

• x axes: normalized with ρ mass in mf→0   (linearly extrapolated)


• finite volume effect tends to reduce S
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S(mπ2): TC contribution per EW doublet (preliminary)

• x axes: normalized with ρ mass in mf→0   (linearly extrapolated)


• finite volume effect tends to reduce S
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S(mπL): TC contribution per EW doublet (preliminary)

• finite volume effect tends to reduce S


• mπL ≲ 7  likely affected by finite volume effect
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S(mπL): TC contribution per EW doublet (preliminary)

• finite volume effect tends to reduce S


• mπL ≲ 7  likely affected by finite volume effect
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spectrum in vector and axialvector channel

• measured with local operators (spin-taste: PV)


• indicating finite volume effect tends to push toward parity doubling
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spectrum in vector and axialvector channel

• measured with local operators (spin-taste: PV)


• indicating finite volume effect tends to push toward parity doubling
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summary and outlook
• Nf=8 QCD  is still a candidate of Walking Technicolor


• Spectrum (rough for the moment) is predicted


• Important to go light towards chiral limit:  we are still doing such effort


• S parameter is investigated for Nf=8 QCD


• staggered SU(Nf/4) vector & axial exact symmetry allows a clean calculation


• large “finite volume effect” on S, to make it reduced, is observed


• axial vector meson mass has interesting volume effect


• further checks required for establish the observation (on-going)


• for sure, one needs careful volume analysis for the S parameter


