

Focus:

The focus will be on the **role that Lattice numerical simulations can play** in the study of possible strong interactions in **Beyond the Standard Model (BSM) physics**, and in particular within the following topic areas:

- Composite dark matter
- Composite Higgs models and EWSB
- Theoretical applications in conformal field theory, string theory, and holography
- Strongly coupled models, including many-fermion gauge theories and SUSY

Focus:

The focus will be on the **role that Lattice numerical simulations can play** in the study of possible strong interactions in **Beyond the Standard Model (BSM) physics**, and in particular within the following topic areas:

- Composite dark matter
- Composite Higgs models and EWSB
- Theoretical applications in conformal field theory, string theory, and holography
- Strongly coupled models, including many-fermion gauge theories and SUSY

Composite Higgs

Assume a new system with N_f fermions coupled to $SU(N_T)$ gauge fields Couple it to Standard Model fields:

- The Higgs could be a $\bar{q}q$ (possibly qq) bound state
- 3 Goldstone pions break EW symmetry
- Tower of additional hadronic states appear in experiments

What models could be compatible with EW data?

- Chirally broken
- Most likely strongly coupled
- Walking

What are the generic properties of strongly coupled models?

- Is walking necessary? Is large anomalous dimension necessary?
- Spectrum ? Where is M_{0++} compared to M_{ρ} ?

Lattice can investigate/answer most of the relevant questions

Roadmap: Theory Space

Systems near the conformal boundary:

SU(2), 2-flavor adjoint - conformal

Systems near the conformal boundary:

SU(2), 2-flavor adjoint - conformal

SU(3), 12 flavor fundamental - looks conformal

Systems near the conformal boundary:

SU(2), 2-flavor adjoint - conformal

SU(3), 12 flavor fundamental - looks conformal

SU(4), 6 flavor 2A - walking?

Systems near the conformal boundary:

SU(2), 2-flavor adjoint - conformal

SU(3), 12 flavor fundamental - looks conformal

SU(4), 6 flavor 2A - walking?

SU(3), 8 flavor fundamental - next 2 talks

Systems near the conformal boundary:

SU(2), 2-flavor adjoint - conformal

SU(3), 12 flavor fundamental - looks conformal

SU(4), 6 flavor 2A - walking?

SU(3), 8 flavor fundamental - next 2 talks

 N_f =8 RG step scaling function (basically negative RG β function) based on gradient flow coupling

Results follow 4-loop MS prediction up to g² = 15
A.H., D.Schaich, A.Veernala, arXiv:1410:5886)

Systems near the conformal boundary:

SU(2), 2-flavor adjoint - conformal

SU(3), 12 flavor fundamental - looks conformal

SU(4), 6 flavor 2A - walking?

SU(3), 8 flavor fundamental - next 2 talks

SU(3) 2 flavor sextet - J. Kuti tomorrow

Systems near the conformal boundary:

SU(2), 2-flavor adjoint - conformal

SU(3), 12 flavor fundamental - looks conformal

SU(4), 6 flavor 2A - walking?

SU(3), 8 flavor fundamental - next 2 talks

SU(3) 2 flavor sextet - J. Kuti tomorrow

Sextet RG step scaling function (\sim negative RG β function) based on gradient flow coupling

Results similar to 4-loop MS prediction up to $g^2 = 5$ A.H, C. Huang, Y.Liu, B. Svetitsky, in prep.)

- ▶ Is this system chirally broken&walking or conformal?
- •Are Wilson and rooted staggered fermions equivalent here? (Universality)

So many possibilities!

Is there any guiding principle to help choose? Is there some general behavior near conformality?

Simple model - I

SU(N_c) gauge with N_ℓ light (m_ℓ ≈ 0) and N_ħ heavy (m_ħ) fermions In the IR the heavy flavors decouple, N_ℓ light remain

 $N_{\ell} + N_h = small$: gauge coupling runs fast, heavy flavors have limited effect on the IR (QCD)

- Perturbative UVFP
- RG flow from UV to IR

Continuum limit: tune $g^2 \rightarrow 0$

$$m_h \rightarrow 0$$

Simple model - II

 $SU(N_c)$ gauge with N_ℓ light ($m_\ell \approx 0$) and N_h heavy (m_h) fermions

 $N_{\ell}+N_h$ = near but below the conformal window IF the gauge coupling is "walking" the IR can be very different

- Perturbative UVFP
- RG flow from UV to IR

There is no guarantee that any $N_{\ell}+N_{\hbar}$ system will walk

Simple model - III

 $SU(N_c)$ gauge with N_ℓ light ($m_\ell \approx 0$) and N_\hbar heavy (m_\hbar) fermions

 $N_{\ell}+N_h=$ above the conformal window, N_{ℓ} is below guarantees that the gauge coupling is "walking"; the IR will be very different

Simple model - III

 $SU(N_c)$ gauge with N_ℓ light ($m_\ell \approx 0$) and N_h heavy (m_h) fermions

 $N_{\ell}+N_h=$ above the conformal window, N_{ℓ} is below guarantees that the gauge coupling is "walking"; the IR will be very different

- 3 independent parameters: (g², m_{ℓ}, m_h)
 - g² does not matter once the flow reaches the RG trajectory
 - sufficient to work at g^2 = const, vary m_h only $(m_\ell = 0)$

- 3 independent parameters: (g², m_{ℓ}, m_h)
 - g² does not matter once the flow reaches the RG trajectory
 - sufficient to work at g^2 =const, vary m_h only $(m_e = 0)$

- 3 independent parameters: (g², m_{ℓ}, m_h)
 - g² does not matter once the flow reaches the RG trajectory
 - sufficient to work at g^2 =const, vary m_h only $(m_e = 0)$

- 3 independent parameters: (g², m_{ℓ}, m_h)
 - g² does not matter once the flow reaches the RG trajectory
 - sufficient to work at g^2 = const, vary m_h only $(m_\ell = 0)$

N_{ℓ} + N_h systems

 $N_{\ell} + N_h = 2 + 6$ if $N_f = 8$ is the UV model or

 $N_{\ell} + N_h = 2 + 10$ for $N_f = 12$ conformal behavior in the UV

Pilot study:

 $N_{\ell}+N_{h}=4+8$: conformal in the UV, $N_{l}=4$ flavor in the IR in collaboration with R. Brower, C. Rebbi, E. Weinberg, O. Witzel arXiv:1411.3243

Why 4+8? We use staggered fermions: 4 and 8 flavors do not require rooting

N_{ℓ} + N_h = 4+ 8 : Parameter space

- $-\beta$ =4.0 (close to the 12-flavor IRFP)
- $m_h = 0.10, 0.08, 0.06, 0.05$
- $-m_{\ell}=0.003, 0.005, 0.010, 0.015, 0.025, 0.035$

Volumes:

24³x48, (dots) 32³64 (circle), 36³64 48³x96 (square) Color: volume OK / marginal/ squeezed

20,000 MDTU, most still in progress

Lattice scale

Use gradient flow to estimate the lattice scale $\sqrt{8t_0}$ Significant variation with m_{ℓ} , m_h , but finite volume effects are controlled

Running coupling

Gradient flow is a gauge field transformation that defines a renormalized coupling arXiv:1006.4518

$$g_{GF}^2(\mu = \frac{1}{\sqrt{8t}}) = \frac{1}{N}t^2\langle E(t)\rangle$$

t: flow time;

E(t):energy density

 g_{GF}^2 is used for scale setting as

$$g_{GF}^2(t=t_0) = \frac{0.3}{N}$$

Is it appropriate to determine the renormalized running coupling? Yes:

- on large enough volumes
- at large enough flow time
- in the continuum limit

Running coupling

Gradient flow is a gauge field transformation that defines a renormalized coupling arXiv:1006.4518

$$g_{GF}^2(\mu = \frac{1}{\sqrt{8t}}) = \frac{1}{N}t^2\langle E(t)\rangle$$

t: flow time;

E(t):energy density

 g_{GF}^2 is used for scale setting as

$$g_{GF}^2(t=t_0) = \frac{0.3}{N}$$

Is it appropriate to determine the renormalized running coupling? Yes:

- on large enough volumes
- at large enough flow time
- in the continuum limit

use t-shift improved coupling

N_f=4: running fast

 $g_{GF}^2(\mu)$ develops a "shoulder" as $m_h \to 0$: this is walking! Walking range can be tuned arbitrarily with m_h

N_f=4: running fast

 $g_{GF}^2(\mu)$ develops a "shoulder" as $m_h \to 0$: this is walking! Walking range can be tuned arbitrarily with m_h

N_f=4: running fast

 $g_{GF}^2(\mu)$ develops a "shoulder" as $m_h \to 0$: this is walking! Walking range can be tuned arbitrarily with m_h

N_f=4: running fast

 $g_{GF}^2(\mu)$ develops a "shoulder" as $m_h \to 0$: this is walking! Walking range can be tuned arbitrarily with m_h

A scale dependent anomalous dimension $\gamma_{\it eff}(\mu)$ can be predicted from the Dirac operator mode number:

$$\mu(\lambda) \propto \lambda^{4/(\gamma_{eff}(\lambda)+1)}$$
, $\lambda \propto \mu$

 $\gamma_{eff}(\mu)$ •matches perturbative value at large $\mu \sim \lambda$ •matches universal IRFP value at λ =0 for conformal system (meaningless once chiral symmetry breaks)

Scale dependent anomalous dimension $\gamma_{\it eff}(\mu)$

In this system the anomalous dimension is not large but still O(1) and can persist

Scale dependent anomalous dimension $\gamma_{\it eff}(\mu)$

In this system the anomalous dimension is not large but still O(1) and can persist

Scale dependent anomalous dimension $\gamma_{\it eff}(\mu)$

In this system the anomalous dimension is not large but still O(1) and can persist

Hadron spectrum (sketch)

Hadron spectrum (sketch)

Hadron spectrum (sketch)

Connected spectrum, 4+8 flavors

- > M_{π} , M_{ρ} vs m_{ℓ} (rescaled by the gradient flow scale $\sqrt{8t_0}$)
 - little variation with m_h

Is the system chirally broken?

 M_{ρ}/M_{π} shows that we approach the chiral regime

< N_f=12 predicts an almost constant ratio (as should be in a conformal system)

(arXiv:1401.0195)

Finally: the 0⁺⁺ scalar state

We use the same method to construct and fit the correlators as with N_f = 8 joint LSD project (E. Weinberg's talk)

- Disconnected correlators:
 - 6 U(1) sources
 - diluted on each timeslice, color, even/odd spatial
 - variance reduced $\langle \bar{\psi}\psi \rangle$
- Fit:
 - correlated fits to both parity (staggered) states
 - the vacuum subtraction introduces very large uncertainties
 - it is advantageous to add a (free) constant to the fit

$$C(t) = c_{0^{++}} \cosh \left(M_{0^{++}} \left(N_T / 2 - t \right) \right) + c_{\pi_{\overline{sc}}} (-1)^t \cosh \left(M_{\pi_{\overline{sc}}} \left(N_T / 2 - t \right) \right) + v$$

-this is equivalent to fitting the finite difference of the correlator

$$C(t+1)-C(t)$$

The 0⁺⁺ mass

We compare predictions from $D_{\ell\ell}$ and $D_{\ell\ell}$ - $C_{\ell\ell}$ correlators

– in the t → ∞ limit they should agree

Also compare different volumes

$$m_h = 0.06$$
, $m_\ell = 0.010$:

M₀₊₊ predicted from non-linear range fits (t_{min} - N_T/2)

The 0⁺⁺ mass

We compare predictions from $D_{\ell\ell}$ and $D_{\ell\ell}$ - $C_{\ell\ell}$ correlators

- in the t → ∞ limit they should agree

Also compare different volumes

$$m_h = 0.06$$
, $m_\ell = 0.010$:

M₀₊₊ predicted from non-linear range fits (t_{min} - N_T/2)

both volumes, both correlators predict a consistent value

The 0⁺⁺ mass

We compare predictions from $D_{\ell\ell}$ and $D_{\ell\ell}$ - $C_{\ell\ell}$ correlators

– in the t → ∞ limit they should agree

Also compare different volumes

$$m_h = 0.06$$
, $m_\ell = 0.010$:

 M_{0++} predicted from non-linear range fits (t_{min} - $N_{T}/2$)

both volumes, both correlators predict a consistent value

pion

Spectrum

Compare the pion, rho and 0⁺⁺ masses:

 $m_h = 0.08$: the 0++

- is just above the pion,
- not Goldstone
- · well below the rho

Spectrum

Compare the pion, rho and 0⁺⁺ masses:

 $m_h = 0.06$: the 0++

- is degenerate with pion at heavier m_ℓ
- need larger volumes, more statistics to resolve the small m_ℓ region

Conclusion & Summary

Lots of interesting possibilities

Lattice studies are needed to investigate strongly coupled systems

- individual and generic properties

Even models without apparent phenomenological importance can teach us to:

- understand universality
 - Wilson vs staggered vs rooted staggered vs domain wall fermions
- understand general properties of strongly coupled systems
 - walking near the conformal window
 - 0⁺⁺ near the conformal window

Models with split fermion masses, like the 4+8 flavor model, can help us navigate the landscape

EXTRA SLIDES

N_{ℓ} + N_h = 4+ 8 : Parameter space

Action: nHYP smeared staggered fermions, fundamental + adjoint gauge plaquette

This action was used in the Boulder 4, 8, and 12 flavor studies (1106.5293, 111.2317, 1404.0984)

It is the action used in the 8 flavor joint project with LSD

(E. Weinberg's talk)

We understand this action well

Topology evolution

Topology is moving well even with the lightest mass

m_∞=0.010, 24³x48 volume

Running coupling

 $t^2\langle E(t)\rangle$ in the chiral limit at various m_h values

Rescaling forces the renormalized couplings to agree at t₀ Fan-out before and after are due to cut-off lattice artifacts

Improved running coupling

t-shift improved running coupling

$$\tilde{g}_{GF}^2(\mu = \frac{1}{\sqrt{8t}}) = \frac{1}{N} t^2 \langle E(t + \tau_0) \rangle$$

by adjusting τ_0 most cut-off effects can be removed

There is one major difference between N_f = 4 + 8 and 8 :

- with non-degenerate masses the 0⁺⁺ splits to light and heavy states
- there is mixing the heavy and light species

This is similar to $\eta - \eta'$ mixing in QCD

→ need to diagonalize the correlator matrix

$$C(t) = \begin{pmatrix} D_{ll}(t) - C_{ll}(t) & \sqrt{2}D_{lh}(t) \\ \sqrt{2}D_{hl}(t) & 2D_{hh}(t) - C_{hh}(t) \end{pmatrix}$$

Normalization: even though we we describe 4 and 8 flavors, on the lattice they correspond to 1 and 2 staggered species

$$C(t) = \begin{pmatrix} D_{ll}(t) - C_{ll}(t) & \sqrt{2}D_{lh}(t) \\ \sqrt{2}D_{hl}(t) & 2D_{hh}(t) - C_{hh}(t) \end{pmatrix}$$

Diagonalizing C(t) could lead to very large statistical errors.

Fortunately: $D_{\omega n}$ << diagonal terms for almost all parameter values

Finite difference correlators at $m_h = 0.05$, $m_{\omega} = 0.005$

$$C(t) = \begin{pmatrix} D_{ll}(t) - C_{ll}(t) & \sqrt{2}D_{lh}(t) \\ \sqrt{2}D_{hl}(t) & 2D_{hh}(t) - C_{hh}(t) \end{pmatrix}$$

Diagonalizing C(t) could lead to very large statistical errors.

Fortunately: $D_{\omega n}$ << diagonal terms for almost all parameter values

but not always!

Derivative correlators at $m_h = 0.05$, $m_{\omega} = 0.015$

$$C(t) = \begin{pmatrix} D_{ll}(t) - C_{ll}(t) & \sqrt{2}D_{lh}(t) \\ \sqrt{2}D_{hl}(t) & 2D_{hh}(t) - C_{hh}(t) \end{pmatrix}$$

Diagonalizing C(t) could lead to very large statistical errors.

Fortunately: the lightest excitation in D_{ω} (and D_{ω} , D_{hh}) is the 0⁺⁺

Derivative correlators at $m_h = 0.06$, $m_{\omega} = 0.010$:

Downard Down Communications at $m_{\omega} = 0.010$: